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Abstract. Let f : Rn → Rm be a C2 definable map in an o-minimal structure. We prove
that the Lipschitz-Killing curvature density at infinity Λlim

k (f−1(t),∞) of the fibers is locally
Lipschitz outside the set of asymptotic critical values of f for k ≥ 1. For k = 0, it is locally
Lipschitz outside the set of generalized critical values of f . This reinforces the recent result
of Dutertre and Grandjean, where only continuity was achieved.

1. Introduction

Consider a C2 definable map f : Rn → Rm in a given o-minimal structure with m < n.
Our primary focus lies in understanding the behavior of the fibers of f at infinity, which can
be captured by the concept of asymptotic critical values. Recall that the set of asymptotic
critical values of f is given by

K∞(f) =

ß
t ∈ Rm : there exists a sequence xl → ∞ such that

f(xl) → y and ∥xl∥ν(dxf(xl)) → 0

™
where ν is the Rabier function [27] defined by

ν : L(Rn,Rm) → R, ν(A) = inf
∥φ∥=1

∥A∗(φ)∥,

with L(Rn,Rm) being the space of linear maps from Rn to Rm and A∗ ∈ L ((Rm)∗, (Rn)∗)
being the adjoint operator of A and φ ∈ (Rm)∗. Remark that ν(A) = dist(A,Σ) where Σ is
the set of singular maps (maps with non-maximal rank) of L(Rn,Rm). In particular, when
m = 1, ν(A) = ∥A∥ (see [20]).

It is worth noting that K∞(f) is a closed definable set of dimension smaller than k con-
taining B∞(f), the set of bifurcation values at infinity of f (see [6],[19]) which is the set of
all values t at which f is not topologically trivial at infinity. In particular, computing K∞(f)
is significantly easier than computing B∞(f).

For the case of functions (i.e., k = 1), Grandjean [17, 18] explored the continuity of functions
t 7→ K(t) and t 7→ |K|(t), which respectively denote the total curvature and the total absolute
curvature of the fiber f−1(t). He established that these functions admit only a finite number
of discontinuities. However, the precise nature of these discontinuities had remained unchar-
acterized. In a later work, Dutertre and Grandjean [14] pointed out that the discontinuities
only appear on the set of generalized critical values of f defined as

K(f) = K∞(f) ∪K0(f)
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where

K0(f) = {t ∈ Rm : there exists x ∈ f−1(t) such that rank(dxf) < m}
is the set of critical values of f . Note that f is globally trivial on Rm \K(f). Recently, in [8],
Pham and the first author investigated the behavior of the tangent cone at infinity of the
fibers of a polynomial f outside the set K∞(f) and proved that the density of these tangent
cones is locally Lipschitz.

In a different context, Dutertre and Grandjean [15] studied the continuity of Lipschitz-
Killing curvature densities Λlim

k (·,∞), a generalized notion of density, at infinity for definable

maps. They proved that Λlim
k (f−1(t),∞) is continuous on Rm \K(f).

The study of Lipschitz-Killing measures on subanalytic sets was initiated by Fu [16] through
the application of geometric measure theory, and later by Bröker and Kuppe [2] in the broader
context of definable sets using stratified Morse theory. The localization of these concepts
was independently introduced by Bernig–Bröcker [1] and Comte–Merle [4]. Although the
notions introduced in these two papers are not identical, one can be expressed as a linear
combination of the other. Comte and Merle [4] proved that local Lipschitz-Killing curvatures
are continuous along the strata of a Verdier stratification. This result was later extended
to Whitney stratifications by Valette and the second author [26], who further proved that if
the stratification satisfies Verdier’s condition, then these local curvatures are indeed locally
Lipschitz. Additional notable contributions on this subject can be found in the works of
Durtertre, see for example [9, 10, 11, 12, 13].

In this paper, we present a simple proof showing that Λlim
k (f−1(t),∞) is locally Lipschitz

on Rm\K∞(f) for k = 1, . . . , n. In addition, Λlim
0 (f−1(t),∞) is locally Lipschitz on Rm\K(f)

(see Theorem 2.11). This generalizes the result of Dutertre and Grandjean in [15].
The idea of our proof is as follows: Let c ∈ Rm \ K∞(f). If f−1(c) is bounded, the

result follows directly from definition (see Remark 2.4). We then may assume that f−1(c)
is unbounded. It follows from Dutertre’s works that, for a closed unbounded definable set
X ⊂ Rn,

(1.1) Λlim
k (X,∞) = Λlim

k (φ(X), 0) for k = 1, . . . , n

and

(1.2) Λlim
0 (X,∞) = χ(X)− 1 + Λlim

0 (φ(X), 0).

Moreover, there is a linear kinematic formula relating Λlim
k (φ(X), 0) and the local Lipschitz-

Killing curvatures Λloc
k (φ(X), 0) defined by Comte and Merle [4]. Here, φ : Rn \ {0} → Rn is

given by φ(x) = x
∥x∥2 . This allows us to shift the problem to the study of the continuity of

Λloc
k (., 0).

Consider the map Φ = (f(x), φ(x)). It is straightforward that the germs at 0 of φ(f−1(t))

and π−1(t) ∩ Im(Φ) coincide where π : Rm × Rn → Rm is the orthogonal projection. We
show that (Im(Φ),Rm × {0}n) satisfies the (w)-regularity condition on Rm \ K∞(f). This

is a surprising fact. Using [26, Proposition 4.4], we obtain that Λloc
k (φ(f−1(t)), 0) is locally

Lipschitz on Rm \ K∞(f) for k = 0, . . . , n. As k ≥ 1, it is obvious from Equality (1.1)
that Λlim

k (X,∞) is locally Lipschitz. When k = 0, since χ(f−1(t)) appears in Formula (1.2),
restricting to Rm\K∞(f) would not be enough to ensure the continuity of χ(f−1(t)). However,
on Rm \K(f), all fibers are of the same topological type, so χ(f−1(t)) is constant. The result
finally follows.

Throughout the paper, we assume the reader’s familiarity with the notion of o-minimal
structures on R. For more comprehensive details, we refer the reader to [5], [28], [24].
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In the paper, we use the following notations:

• Bn
r , B

n
r and Sn−1

r respectively denote the n-dimensional open ball, the n-dimensional
closed ball and the (n − 1)-dimensional sphere in Rn with radius r centered at the

origin. When r = 1, we use the notations Bn, Bn
and Sn−1, respectively.

• bk and sk denote the volumes of the unit k-dimensional ball and the unit k-dimensional
sphere, respectively.

• Gk
n is the set of k-dimensional vector subspaces of Rn equipped with the O(n)-invariant

density and gkn is its volume; Ak
n is the set of k-dimensional affine plane in Rn.

• Let X ⊂ Rn be a definable set. We denote by X the closure of X in Rn and by χ(X)
the Euler characteristic of X. The link at infinity of X, denoted by Lk∞(X), is the
set Lk∞(X) = X ∩ Sn−1

R for R sufficiently large. If 0 ∈ X, then the link at 0 of X,
denoted by Lk(X), is given by Lk(X) = X ∩ Sn−1

r for r sufficiently small.
• Given non-negative functions f, g : X → R, we write f ≲ g if there exists a positive
constant C such that f(x) ≤ Cg(x) for all x ∈ X. This constant C is referred to as a
constant for the relation ≲.

Acknowledgements. The authors would like to express their gratitude to the Vietnam In-
stitute for Advanced Study in Mathematics (VIASM) for their warm hospitality and generous
support during the writing of this paper. We would also like to thank Pham Tien Son, Nicolas
Dutertre and Vincent Grandjean for their interest and valuable comments.

2. Lipschitz-Killing curvatures at infinity

2.1. Lipschitz-Killing curvature densities. Let us recall the definition of Lipschitz-Killing
curvature densities based on the approach by Bröcker and Kuppe [2]. Additionally, we will
review some related results from Dutertre [9, 10, 11, 12, 13].

Let X be a compact definable subset of Rn and let S = {Si}i∈I be a C2 Whitney stratifi-
cation of X. Note that the existence of such a stratification is guaranteed by [22, 25]. Fix a
stratum S. For k ∈ {0, . . . , dS} where dS = dimS, we define λS

k : S → R as

λS
k (x) =

1

sn−k−1

∫
Sn−1∩NxS

indnor (v
∗, X, x)σdS−k (IIx,v) dv,

where v∗ is the linear form on Rn defined by v∗(x) = ⟨v, x⟩, NxS is the normal space to S at
x in Rn, IIx,v is the second fundamental form on S in the direction of v and σdS−k (IIx,v) is
the (dS − k)-th elementary symmetric function of its eigenvalues. The index indnor (v

∗, X, x)
is defined as follows:

indnor (v
∗, X, x) = 1− χ (X ∩NxS ∩ Bn

r (x) ∩ {v∗ = v∗(x)− δ}) ,
where 0 < δ ≪ r ≪ 1. For k = dS + 1, . . . , n, set λS

k (x) = 0.
Given a Borel set U ⊂ X and k ∈ {0, . . . , n}, we set

Λk(X,U) =
∑
i∈I

∫
Si∩U

λSi
k (x)dx.

These measures Λk(X,−) are called Lipschitz-Killing measures of X. Note that

Λd+1(X,U) = · · · = Λn(X,U) = 0,

and Λd(X,U) = Hd(U) where d = dimX and Hd is the d-dimensional Hausdorff measure in
Rn. In particular, when U = X,

Λ0(X,X) = χ(X).
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2.1. Definition. Let (X, 0) ⊂ (Rn, 0) be a closed definable germ. For k = 0, . . . , n, the k-th
Lipschitz-Killing curvature density at 0 of X is defined by:

Λlim
k (X, 0) = lim

r→0

Λk(X,X ∩ Bn
r )

bkrk
.

2.2. Remark. Λlim
0 (X, 0) = 1, Λlim

d (X, 0) = θ(X, 0), Λlim
k (X, 0) = 0 for all k > d where

d = dim(X, 0) and θ(X, 0) is the density at 0 of X.

2.3.Definition. LetX be a closed definable subset of Rn. For k = 0, . . . , n, the k-th Lipschitz-
Killing curvature density at infinity of X is defined as:

Λlim
k (X,∞) = lim

R→+∞

Λk(X,X ∩ Bn
R)

bkRk
.

2.4. Remark. (i) Λlim
d (X,∞) = θ(X,∞) if d ≥ 1 and Λlim

k (X,∞) = 0 for all k > d, where
d = dim(X,∞) and θ(X,∞) is the density at infinity of X.

(ii) If X is bounded then Λlim
k (X,∞) = 0 for all k ≥ 1 and Λlim

0 (X,∞) = χ(X).

The following two theorems are due to Durtertre [9, 10, 11], originally stated for closed
semi-algebraic/subanalytic sets but also applicable to closed definable sets.

2.5. Theorem ([9, Corollary 5.7] and [10, Corollary 3.14 ]). Let X ⊂ Rn be a closed definable
set. We have

Λlim
0 (X,∞) = χ(X)− 1

2
χ(Lk∞(X))− 1

2gn−1
n

∫
Gn−1

n

χ(Lk∞(X ∩H))dH.

Furthermore for k ∈ {1, . . . , n− 2}, we have

Λlim
k (X,∞) =− 1

2gn−k−1
n

∫
Gn−k−1

n

χ (Lk∞(X ∩H)) dH

+
1

2gn−k+1
n

∫
Gn−k+1

n

χ (Lk∞(X ∩H)) dH.

and

Λlim
n−1(X,∞) =

1

2g2n

∫
G2

n

χ (Lk∞(X ∩H)) dH,

Λlim
n (X,∞) =

1

2g1n

∫
G1

n

χ (Lk∞(X ∩H)) dH.

Similarly, we also have the following.

2.6. Theorem ([11, Theorem 5.1]). Let (X, 0) ⊂ (Rn, 0) be a closed definable germ. We have

Λlim
0 (X, 0) = 1− 1

2
χ(Lk(X))− 1

2gn−1
n

∫
Gn−1

n

χ(Lk(X ∩H))dH.

In addition, for k ∈ {1, . . . , n− 2},

Λlim
k (X, 0) = − 1

2gn−k−1
n

∫
Gn−k−1

n

χ(Lk(X ∩H))dH

+
1

2gn−k+1
n

∫
Gn−k+1

n

χ(Lk(X ∩H))dH,
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and

Λlim
n−1(X, 0) =

1

2g2n

∫
G2

n

χ(Lk(X ∩H))dH,

Λlim
n (X, 0) =

1

2g1n

∫
G1

n

χ(Lk(X ∩H))dH.

2.2. Comte-Merle’s local Lipschitz-Killing curvatures and kinematic formulas. Let
X be a closed definable germ at 0. Comte and Merle [4] introduced, for each k = 0, . . . , n, a
value referred to as the k-th local Lipschitz-Killing curvature, which is defined as follows:

Λloc
k (X, 0) = lim

r→0

1

β(n, k)

∫
P∈Gk

n

∫
x∈P

χ
Ä
X ∩ π−1

P (x) ∩ Bn
r

ä
dHk(x) dP

where β(n, k) =
Γ
(
k+1
2

)
Γ
(
n−k+1

2

)
Γ(12)Γ

(
n+1
2

) .

It follows from definition that Λloc
0 (X, 0) = 1, Λloc

d (X, 0) = θ(X, 0) and Λloc
k (X, 0) = 0 for

every k > d, where d = dimX.
It has been known from [2, Corollary 8.5] that if X ⊂ Rn is a compact definable set and

U ⊂ X is a Borel set, then for k ∈ {0, . . . , n}, we have

Λn−k(X,U) =
1

β(n, n− k)

∫
Ak
n

Λ0(X ∩ E,X ∩ E ∩ U)dE.

And this yields that

Λloc
k (X, 0) = lim

r→0

Λk

Ä
X ∩ Bn

r , X ∩ Bn
r

ä
bkrk

.

Note that in general, Λk

Ä
X,X ∩ Bn

r

ä
is different from Λk

Ä
X ∩ Bn

r , X ∩ Bn
r

ä
.

In [4], the authors introduced the notion of the polar invariant σk(X, 0). To define this,
consider k ∈ 0, . . . , n. For P ∈ Gk

n, let πP : X → P denote the orthogonal projection
onto P . It was shown that for generic P in Gk

n, there exists an open dense definable set

(KP , 0) ⊂ (P, 0), along with its decomposition KP =

NP⋃
i=1

KP
i such that the function

KP
i 7→ χP

i = lim
r→0

lim
y∈KP

i ,y→0
χ
Ä
π−1
P (y) ∩X ∩ Bn

r

ä
is well-defined for every i. The polar invariant σk(X, 0) is then given by

σk(X, 0) =
1

sk

∫
Gk

n

NP∑
i=1

χP
i · θ (Kp

i , 0) dP.

Note that σ0(X, 0) = 1 by definition. In addition, one has the following linear kinematic
formula.

2.7. Theorem ([4, Theorem 3.1]). Let (X, 0) ⊂ (Rn, 0) be a closed definable germ. Then, we
have Ö

Λloc
1 (X, 0)

...
Λloc
n (X, 0)

è
=

á
1 m2

1 . . . mn
1

0 1 . . . mn
2

...
...

. . .
...

0 0 . . . 1

ë
·

Ö
σ1(X, 0)

...
σn(X, 0)

è
,
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where mi
i = 1, mj

i =
bj

bj−ibi

Å
j
i

ã
− bj−1

bj−1−ibi

Å
j − 1
i

ã
, for i+ 1 ≤ j ≤ n.

In another context, Dutertre [11, Theorem 5.6] proved the following.

2.8. Theorem. For k ∈ {0, . . . , n− 1},

Λlim
k (X, 0) = σk(X, 0)− σk+1(X, 0).

In particular,

Λlim
n (X, 0) = σn(X, 0).

This leads to the conclusion that the Lipschitz-Killing curvature densities Λlim
k (X, 0) can

be expressed as linear combinations of local Lipschitz-Killing curvatures Λloc
j (X, 0), and the

corresponding matrix is invertible. Utilizing this alongside [26, Proposition 4.4], we obtain
the following.

2.9. Proposition. Let X be a closed definable set in Rn. Consider a C2-Verdier stratification
S of X. Assume that S ⊂ {0}n−m × Rm is a stratum of S and let π denote the orthogonal
projection from Rn onto {0}n−m × Rm. Then, for k = 0, . . . , n, the function t 7→ Λlim

k (Xt, 0)
is locally Lipschitz along S where Xt = π−1(t) ∩X.

2.10. Remark. The existence of Verdier stratifications in o-minimal structures was proven
by [23].

2.3. Lipschitz continuity of Lipschitz-Killing curvature densities at infinity. The
main result of the paper is as follows.

2.11. Theorem. Let f : Rn → Rm (n ≥ 2) be a C2 definable map. Then, the function
t 7→ Λlim

k (f−1(t),∞) is locally Lipschitz on Rm \ K∞(f) if k > 0. And, the function t 7→
Λlim
0 (f−1(t),∞) is locally Lipschitz on Rm \K(f).

Before proving Theorem 2.11, we need some preparation. Consider the map

φ : Rn \ {0} → Rn \ {0}, x 7→ φ(x) =
x

∥x∥2
.

2.12. Lemma. Let X ⊂ Rn be an unbounded closed definable set. Then,

Λlim
0 (X,∞) = χ(X)− 1 + Λlim

0 (φ(X), 0)

and

Λlim
k (X,∞) = Λlim

k (φ(X), 0)

for k = 1, . . . , n.

Proof. Observe that for each element H of Gk
n and R > 0, we have

φ(X ∩ Sn−1
R ∩H) = φ(X) ∩ Sn−1

1
R

∩H.

Therefore

φ(Lk∞(X ∩H)) = Lk(φ(X) ∩H).

Consequently,

χ(Lk∞(X ∩H)) = χ(Lk(φ(X) ∩H)) = χ(Lk(φ(X) ∩H)).

By Theorem 2.5 and Theorem 2.6, we derive the desired equalities. □
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Now let us recall the notion of (w)-regularity introduced by Verdier [29]. For a pair (Y,Z)
of C2 submanifolds in Rn satisfying Y ⊂ Z, we say that (Y, Z) is (w)-regular if for any point
x ∈ Y , there exist a neighborhood Ux of x in Rn and a constant C > 0 such that

δ (TyY, TzZ) ⩽ C∥y − z∥ for all y ∈ Ux ∩ Y and z ∈ Ux ∩ Z.

Here, for linear subspaces A,B of Rn,

δ(A,B) = sup
v∈A,∥v∥=1

∥v − πB(v)∥

where πB is the orthogonal projection from Rn onto B.
Let c ∈ Rm \K∞(f). Suppose that f−1(c) is unbounded. Then there is r > 0 sufficiently

small such that f−1(t) is unbounded for all t ∈ Bm
r (c). It is easy to derive from the definition

of K∞(f) that if r is taken small enough then there are constants R > 0 and ε > 0 such that

(2.1) ∥x∥ν(dxf) > ε for all x ∈ f−1(Bm
r (c)) \ Bn

R.

Consider the map

Φ : Rn \ {0} → Rm × Rn, Φ(x) = (f(x), φ(x)) =

Å
f(x),

x

∥x∥2

ã
.

Observe that Φ is a C2 injection. Additionally, rank(dxΦ) = n for all x ̸= 0. This implies
that Φ|Rn\{0} is a C2 embedding. Consequently, if we let

X = f−1(Bm
r (c)) \ Bn

R

which is an open subset of Rn, then

(2.2) Z = Φ(X)

is a C2 submanifold of Rm × Rn. Let

(2.3) Y = Bm
r (c)× {0}.

It is obvious that Y ⊂ Z. The following lemma is the key to prove Theorem 2.11.

2.13. Lemma. The pair (Y,Z) is (w)-regular.

Proof. To prove the lemma, it suffices to show that the unit vector fields ∂
∂ti

, i = 1, . . . , k

defined on Y can be extended to a rugose stratified vector field v(t, u) on Z ∪ Y (see [3,
Proposition 2]).

Fix i, 1 ≤ i ≤ k. For x ∈ X, let Nxf denote the orthogonal complement of ker dxf in
TxX = Rn. Since dxf : Rn → Rm is surjective, the restriction dxf |Nxf : Nxf → Rm is an
isomorphism. We define

ξ(x) = (dxf |Nxf )
−1

Å
∂

∂ti

ã
.

Then, ξ is a tangent vector field on X and dxf(ξ(x)) =
∂
∂ti

(in other words, ξ is a lift of ∂
∂ti

by df).

2.14. Claim.

∥ξ(x)∥ ≤ 1

ν(dxf)



8 SI TIEP DINH AND NHAN NGUYEN

Proof. It follows from [20, Proposition 2.3] that

ν(dxf) = sup{r ≥ 0 : Bm
r ⊂ dxf(B

n
)} = sup{r ≥ 0 : Bm

r ⊆ dxf(B
n ∩Nxf)}.

This implies that

Bm
ν(dxf) ⊂ dxf(B

n ∩Nxf),

and hence

Bm ⊂ dxf
(
Bn

1
ν(dxf)

∩Nxf
)
.

Therefore

(dxf)
−1(Bm

) ∩Nxf ⊂ Bn
1

ν(dxf)
∩Nxf.

Note that
∥∥∥ ∂
∂ti

∥∥∥ = 1 and ξ(x) = (dxf |Nxf )
−1( ∂

∂ti
). This yields that ξ(x) ∈ Bn

1
ν(dxf)

∩Nxf , and

the claim follows. □

It follows from (2.1) and Claim 2.14 that

(2.4) ∥ξ(x)∥ ≤ ∥x∥
ε

.

Now we define

v(t, u) =


∂

∂ti
for (t, u) ∈ Y

dxΦ (ξ(x)) =
∂

∂ti
+ dxφ (ξ(x)) for (t, u) ∈ Z

where x = Φ−1(t, u) = u
∥u∥2 and φ(x) = x

∥x∥2 .

It is clear that v(t, u) is an extension of ∂
∂ti

. It remains to check the rugosity of v, which

means that for each a = (t, 0) ∈ Y , there exists a neighborhood Ua of a in Rm×Rn such that

∥v(z)− v(y)∥ ≲ ∥z − y∥

for all z ∈ Z ∩ Ua and y ∈ Y ∩ Ua.
Given a0 = (t0, 0) ∈ Y , choose a small neighborhood U of a0 in Rm+n. Let z = (tz, uz) ∈

Z ∩ U and y = (ty, 0) ∈ Y ∩ U . Setting x = Φ−1(z), we have

(2.5) ∥v(z)−v(y)∥ ≤ ∥v(z)−v(tz, 0)∥+∥v(tz, 0)−v(ty, 0)∥ = ∥v(z)−v(tz, 0)∥ = ∥dxφ(ξ(x))∥ .

Note that

dxφ =


∥x∥2 − 2x21

∥x∥4
−2x1x2
∥x∥4

. . .
−2x1xn
∥x∥4

...
...

...
−2xnx1
∥x∥4

−2xnx2
∥x∥4

. . .
∥x∥2 − 2x2n

∥x∥4

 .

Observe that the absolute value of each entry of dxφ is ≲ 1
∥x∥2 so ∥dxφ∥ ≲ 1

∥x∥2 . By (2.4), it

yields that

(2.6) ∥dxφ (ξ(x))∥ ≲ ∥dxφ∥∥ξ(x)∥ ≲
1

∥x∥
.

On the other hand,

∥z − y∥ ≥ dist(z, Y ) = ∥z − (tz, 0)∥ = ∥uz∥ = ∥φ(x)∥ =
1

∥x∥
.
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This, together with (2.5) and (2.6), implies that

∥v(z)− v(y)∥ ≲ ∥z − y∥.
Note that the constant for the relation ≲ depends only on U . Thus, Lemma 2.13 is proved. □

Proof of Theorem 2.11. Let c ∈ Rm \ K∞(f). If f−1(c) is bounded, the result is trivial by
Remark 2.4 (ii). Now assume that f−1(c) is unbounded. Let r, ε and R be positive constants
such that (2.1) holds. Let Y and Z be given by (2.3) and (2.2). By definition, the germs (Zt, 0)

and (φ(f−1(t), 0) coincide. Since (Y, Z) is (w)-regular in view of Lemma 2.13, according to
Proposition 2.9, for 0 ≤ k ≤ n, Λlim

k (Zt, 0) is locally Lipschitz on Bm
r (c), implying the same

for Λlim
k (φ(f−1(t)), 0). Furthermore, by Lemma 2.12 we have:

Λlim
0 (f−1(t),∞) = χ(f−1(t))− 1 + Λlim

k (φ(f−1(t)), 0)

and
Λlim
k (f−1(t),∞) = Λlim

k (φ(f−1(t)), 0)

for k = 1, . . . , n. Therefore, Λlim
k (f−1(t),∞) is also locally Lipschitz on Bm

r (c) for k ≥ 1; in

particular Λlim
k (f−1(t),∞) is locally Lipschitz at c. In addition, if c ̸∈ K0(f), f is topologically

trivial in a neighborhood of c. Thus χ(f−1(t)) is constant in that neighborhood. Since

Λlim
0 (φ(f−1(t)), 0) is locally Lipschitz at c, so is Λlim

0 (f−1(t),∞). The theorem is proved.
□

2.15. Remark. Globally topological fibration triviality does not necessarily imply the local
Lipschitz continuity (or even the continuity) of Lipschitz-Killing curvature densities of the
fibers. To illustrate this, consider the polynomial function (see [7, Example 3.1], [8, Example
3.3])

f : R3 → R, (x, y, z) 7→ f(x, y, z) = z(x2 + (xy − 1)2).

It has been shown in [7, Example 3.1] that f is a globally trivial fibration and in [8, Example
3.3] that 0 ∈ K∞(f). Note that

f−1(0) = {z = 0}.
Thus

(2.7)
Λlim
2 (f−1(0),∞) = Λlim

2 ({z = 0},∞) = Λlim
2 (φ{z = 0}, 0)

= Λlim
2 ({z = 0}, 0) = θ({z = 0}, 0) = 1

where θ(·, 0) is the density at 0. On the other hand, for t ̸= 0, we have

(2.8) Λlim
2 (f−1(t),∞) = Λlim

2 (φ(f−1(t)), 0) = θ(φ(f−1(t)), 0) ≥ θ(C0(φ(f−1(t))), 0)

where C0(·) is the tangent cone at 0 and the last inequality follows from [21, Théorème 3.8].

It is not hard to see that for an unbounded definable set X ⊂ Rn, C∞(X) = C0(φ(X)) where
C∞(X) denotes the tangent cone at infinity of X. Moreover, we have

C∞(f−1(t)) =

®
C∞(f−1(0) ∪ {x = 0, z ⩾ 0} if t > 0,

C∞(f−1(t) ∪ {x = 0, z ⩽ 0} if t < 0.

Therefore

θ(C0(φ(f−1(t))), 0) = θ(C∞(f−1(t)), 0) =
3

2
.

Combining this and (2.8), we get

Λlim
2 (f−1(t),∞) ≥ 3

2
for t ̸= 0.
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So this, together with (2.7), implies that the function t 7→ Λlim
2 (f−1(t),∞) is not continuous

at 0. In particular, it is not locally Lipschitz continuous at 0.
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