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ABSTRACT. Let {Di}n+1
i=1 be n+ 1 smooth hypersurfaces in Pn(C), not all being hyperplanes, satisfying one

precise geometric (generic) condition. Then, for every algebraically nondegenerate entire holomorphic curve
f : C → Pn(C), we show a weak Second Main Theorem:

n+1∑
i=1

δf (Di) < n+ 1

in terms of defect inequality in Nevanlinna theory.

1. Introduction

Given a codimension one subvariety D in a complex manifold X such that the complement X\D satisfies
certain complex hyperbolicity quality in spirit of the Kobayashi conjecture [Kob70] or the Green-Griffiths
conjecture [GG80], one seeks to reach a quantivative interpretation in terms of Second Main Theorem in
Nevanlinna theory, which relates, in certain proportional way, the “growth rate” of any algebraically nonde-
generate holomorphic map f : S → X from certain source space S, usually being C, to, the “intersection
frequency” or “impact” of f(S) with respect to D.

The classical result being Nevanlinna’s celebrated work [Nev25] which quantifies Picard’s little theorem
about the hyperbolicity of P1(C) \ {3 points}. For higher dimensional target space X , for various source
space S and (certain) holomorphic maps f : S → X , we refer the readers to [Nev70, Sto77, Fuj93, NW14,
Ru21] for developments.

In this paper, we study the case that D = ∪q
i=1Di consists of q = n+1 smooth hypersurfaces Di ⊂ Pn(C)

of degrees di ⩾ 1 in general position. The algebraic degeneracy of entire holomorphic curves into the
complement Pn(C) \D was established by Noguchi-Winkelmann-Yamanoi [NWY07].

Main Theorem. Let {Di}n+1
i=1 be n+1 smooth hypersurfaces in Pn(C), not all being hyperplanes, satisfying

one precise geometric (generic) condition. Then, for every algebraically nondegenerate entire holomorphic
curve f : C → Pn(C), the following defect inequality holds

(1.1)
n+1∑
i=1

δf (Di) < n+ 1.

Here we recall some standard notions in Nevanlinna theory. The order function

Tf (r) :=

∫ r

1

d t

t

∫
Dt

f∗ωFS (r > 1),
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is a geometric equivalent version of Nevanlinna’s characteristic function, historically discovered indepen-
dently by Shimizu and Ahlfors [NW14, p. 11–12], measuring the area growth of the image of the disc Dr

centered at 0 having radius r, with respect to the Fubini–Study metric ωFS ; and

N
[k]
f (r,Di) :=

∫ r

1

∑
|z|<t

min{k, ordz f∗Di}
d t

t
(i=1, ..., q; r > 1)

are the level–k truncated counting functions (k ∈ N ∪ {∞}), which capture the intersection frequencies of
f(C) ∩Di. The defect of f with respect to Di is given by

δ
[k]
f (r,Di) := lim inf

r→∞

(
1−

N
[k]
f (r,Di)

deg(Di)Tf (r)

)
.

For brevity, when k = ∞, we write Nf (r,Di), δf (Di) instead of N [∞]
f (r,Di), δ

[∞]
f (Di) . By the First Main

Theorem, one has

(1.2) 0 ≤ δf (r,Di) ≤ 1.

Moreover, δf (r,Di) = 1 if and only if

(1.3) Nf (r,Di) = o(Tf (r)),

namely the curve f does not meet Di often. Theorefore (1.1) serves as a weak Second Main Theorem.
When D consists of q ≥ n + 2 hyperplanes in general position, such a defect relation with truncation

at level n is a corollary of the Second Main Theorem of H. Cartan [Car33]. When all components of D
are hypersurfaces, such Second Main Theorems were obtained by Eremenko-Sodin [ES91] and Ru [Ru04],
without effective truncation level.

When D has q ≤ n + 1 components, few such Second Main Theorems were known. Following Siu’s
strategy [Siu04] for the (logarithmic) Kobayashi and Green-Griffiths conjectures [Dar16a], namely by using
jet differential techniques [Blo26] and slanted vector fields [Siu02, Mer09, Dar16b], a Second Main Theo-
rem was reached in the case q = 1 for general hypersurface of large degree d ≥ 15(5n + 1)nn [HVX19].
By a breakthrough of Riedl-Yang [RY18], one can remove the Zariski dense assumption on f(C) ⊂ Pn(C).
Moreover, the exponential degree bound shall be lowered to certain polynomial growth by the recent ad-
vancement of Bérczi-Kirwan [BK19].

As a matter of fact, our initial motivation is to study the case of 3 conics in P2(C) [GP85, DSW95].
See also [Bab84, Zai88, SY96, BD01, Rou09, Tib13] for nearby hyperbolicity results. When the number of
targets is ≤ n+1, Cartan’s Wronskian method seems infertile. One possible approach is by using negatively
twisted logarithmic k-jet differentials [HVX19, Theorem 3.1], the existence of which is guaranteed by
certain Riemann-Roch calculation, albeit we might have no effective upper bound of k ≫ 1 by current
method (see e.g. [Mer15]). Consequently, the task of “controlling their base loci” is obscure, especially in
low degree case, due to the lack of sufficient information of jet differentials for elimination process, even
for the “baby” case of 3 conics in P2(C) where k equals merely 2. Similar difficulties also appeared in an
ampleness conjecture of Debarre [Deb05, Bro16, Xie18, BD18] for k = 1.

Backing to our Main Theorem, we will take an alternative geometric approach in which the number

n+ 1 = dimC Pn(C) + 1
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of components of D is critical. Let us sketch the proof now. For simplicity, we assume that every hypersur-
face

Di = (Qi = 0) ⊂ Pn(C) (i=1, ..., n+1)

is defined by some homogeneous polynomial Qi ∈ C[z0, . . . , zn] of equal degree d. Suppose on the contrary
that (1.1) fails, i.e., by (1.2), all defect values reach maximum

(1.4) δf (r,Di) = 1 (i=1, ..., n+1).

For the parabolic Riemann surface C\f−1(D), we will employ a non-smooth exhaustion function σ [PS14,
Subsection 4.1] such that the weighted Euler characteristic Xσ(r) is negligable compared with the parabolic
order function

(1.5) lim sup
r→∞

Xσ(r)

Tf,σ(r)
= 0.

The key trick is introducing the auxiliary hypersurface V ⊂ Pn(C) defined by the Jacobian

det
[∂Qi

∂zj

]
0≤i,j≤n

of degree
n∑

i=0

di − (n+ 1).

Geometrically, V consists of the critical points of the endomorphism

F (z) = [Q1(z) : Q2(z) : · · · : Qn+1(z)] : Pn(C) −→ Pn(C).

Whence if the entire curve f intersects V at a point P ∈ C, the composite curve g := F ◦ f must tangent
to W := F (V), i.e., having intersection multiplicity ≥ 2 at P . We will show that, for generic choices of
polynomials Qi, the hypersurfaces V and {Hi}n+1

i=1 are in general position. Thus we can apply a Second Main
Theorem of Min Ru [Ru04] to show that, under the presumed condition (1.4), the intersection frequency of
the holomorphic curve f̃ := f |C\f−1(D) with V must be high. This will contradict with another fact, to be
obtained in Section 2 following a strategy of Noguchi-Winkelmann-Yamanoi [NWY08], that the parabolic
holomorphic curve g̃ := g|C\f−1(D) into the semi-abelian variety (C∗)n cannot tangent to the effective
divisor W very often. For details of the proof, see Section 5.
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2. Parabolic Nevanlinna theory in semi-abelian varieties

A non-compact Riemann surface Y is called parabolic if it admits a smooth exhaustion function

σ : Y → [1,∞[

such that log σ is harmonic outside a compact subset of Y . For every r > 1, we denote by

Br := {y ∈ Y : σ(y) < r}, Sr := {y ∈ Y : σ(y) = r}
the open parabolic ball and the parabolic sphere of radius r respectively. By Sard’s theorem, for almost
every value r ∈ R>1, the sphere Sr is smooth. We donote its Euler characteristic by χσ(r), and we consider
the induced length measure

dµr := dc log σ|Sr .

The weighted Euler characteristic Xσ(r) is then defined by logarithmic average

Xσ(r) :=

∫ r

1
χσ(t)

d t

t
.

Replacing the exhaustion C = ∪r>1Dr by Y = ∪r>1Br, one can develop Nevanlinna theory for par-
abolic Riemann surfaces [Sto77, PS14]. Let X be a compact complex manifold. Let L be a holomorphic
line bundle on X equipped with some hermitian metric ∥.∥ with Chern (1, 1)-form ωL. Let E be an effec-
tive divisor defined by a global nonzero section s of L. In the parabolic context, the standard notions in
Nevanlinna theory are defined as follows.

1. The k-truncated counting function

N
[k]
f,σ(r, E) :=

∫ r

1

∑
z∈Br

min{k, ordz f∗E} d t

t
(k∈N∪{∞}; r > 1).

2. The proximity function

mf,σ(r, E) :=
1

2π

∫
Sr

log
1

∥s ◦ f∥
dµr.

3. The order function
Tf,σ(r, L) :=

∫ r

1

d t

t

∫
Bt

f∗ωL (r > 1).

By the Jensen formula in the parabolic setting [PS14, Proposition 3.1], one has the following

Parabolic First Main Theorem. Let f : Y → X be a holomorphic map such that f(Y) ̸⊂ suppE. Then

Tf,σ(r, L) = mf,σ(r, E) +Nf,σ(r, E) +O(1).

For a parabolic Second Main Theorem, the weighted Euler characteristic natural appears.

Parabolic Logarithmic Derivative Lemma. ([PS14, Theorem 3.7]) Let f : Y → P1(C) be a nonconstant
meromorphic function. Then there exists some positive constant C > 0 such that the following estimate

m f ′
f
,σ
(r) ≤ C

(
log Tf,σ(r) + log r

)
+ Xσ(r)

holds true for all r > 1 outside an exceptional set of finite Lebesgue measure.

Using the above version of the classical Logarithmic Derivative Lemma, many results in the value distri-
bution of entire holomorphic curves can be translated into the parabolic context. In the next parts, we will
do this work in the case of semi-abelian varieties and the case of projective spaces.
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3. HOLOMORPHIC CURVES FROM A PARABOLIC RIEMANN SURFACE INTO SEMI-ABELIAN VARIETIES

Throughout this section, we fix an exhaustion σ on the parabolic Riemann surface Y , and for brevity, we
will skip this notation. In [NWY08], Noguchi-Yamanoi-Winkelmann established a second type estimate for
k-jet lifts of algebraically nondegenerate entire holomorphic curves f in semi-abelian varieties with the best
truncation level one counting function, accepting an error term of the form ϵTf (r) (or equivalently o(Tf (r)),
see [Yam13, Lemma 1.5]. The optimal truncation level in the counting function in their result yields several
applications in studying the degeneracy of holomorphic curves [NWY08, NWY07].

This remarkable result can be translated into the parabolic context. But we need to take into account the
weighted Euler characteristic X(r) appearing each time when we apply the logarithmic derivative lemma.
Hence throughout this section, it is necessary to put the following assumption:

(3.1) lim sup
r→∞

X(r)

Tf (r)
= 0.

For application, we only need the result in the case of (C∗)n. Nevertheless, although we only need
estimations for holomorphic curves, we must jump to higher order jets and establish a second main theorem
type estimate, not only divisors, but also subvarieties of codimension ≥ 2 (see [NW14, 2.4.1] for definitions
of standard notions in Nevanlinna theory for coherent ideal sheaves). For the notion of logarithmic k-jet
bundle and its properties, the readers were referred to [DL01, Nog86].

With the assumption (3.1) about weighted Euler characteristic, [NW14, Thm. 6.5.1] for the special case
A := (C∗)n could be translated into the parabolic context as following

Theorem 3.1. Let Y be a parabolic Riemann surface. Let f : Y → A := (C∗)n be an algebraically
nondegenerate holomorphic curve. For an integer k ≥ 0, denote by Jkf the k–jet lift of f and by Xk(f) the
Zariski closure of Jkf in the k-jet space Jk(A). Let Z be an algebraic reduced subvariety of Xk(f).

(1) There exists a compactification X̄k(f) of Xk(f) such that

TJkf (r, ωZ̄) ≤ N
[1]
Jkf

(r, Z) + o(Tf (r)) ∥,

where Z̄ denotes the closure of Z in X̄k(f).
(2) Assume furthermore that codimXk(f) Z ≥ 2, then

TJkf (r, ωZ̄) = o(Tf (r)).

(3) In the case where k = 0 and Z is an effective divisor D on A, there exists a smooth compactification
of A that is independent of f such that

Tf (r, L(D)) ≤ N
[1]
f (r,D) + o(Tf (r, L(D))) ∥ .

This together with the First Main Theorem yields the following

Corollary 3.2. Let Y be a parabolic Riemann surface. Let D be an effective divisor on A := (C∗)n. Let
f : Y → A be an algebraically nondegenerate holomorphic map. Then there exist a smooth compactification
of A independent of f such that

Nf (r,D)−N
[1]
f (r,D) = o(Tf (r, L(D))) ∥ .

Now we provide a sketch proof of Theorem 3.1. We only recall the key steps in [NWY08], and emphasize
some required modifications. First, the generalization of the Lemma on logarithmic forms [NW14, Lem
4.7.1] to the parabolic context is straightforward.
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Lemma 3.3. Let M be a complex projective algebraic manifold and let D be a reduced divisor on M . Let
f : Y → M be a holomorphic from a parabolic Riemann surface Y into M such that f(Y) ̸⊂ D. Let ω be
a logarithmic k-jet differential along D over M . Put ξ := ω(Jkf), then

mξ(r) ≤ Sf (r) + CX(r) = o(Tf (r)) ∥ .

For an integer k ≥ 0, let Jk(A) denote the k-jet bundle over A. There is a trivialization

Jk(A) = A× Jk,A = A× Cnk,

where n = dimA, such that the natural induced A-action is given by a : (x, v) → (x + a, v) for all
x ∈ A, v ∈ Cnk. Denote by Jkf the k–jet lift of f and by Xk(f) the Zariski closure of Jkf in the k-jet
space Jk(A). Let B := StA(Xk(f)) be the stabilizer group with respect to the natural A-action and let
q : A → A/B be the natural projection. Then the jet projection method [NW14, Thm. 6.2.6] together with
Lemma 3.3 yield Tq◦f (r) = o(Tf (r)). Furthermore, we can assume dimB > 0, otherwise we would have
Tf (r) = o(Tf (r)), which is impossible.

We will first establish a second main theorem for jet lifts. Let Z be an algebraic reduced subvariety of
Xk(f). Let B0 = St0A(Xk(f)) denote the identity component of B. Then

(3.2) dimB0 > 0 and T
qB

0
k ◦Jkf

(r) = o(Tf (r)) ∥,

where qB
0

k : Jk(A) → Jk(A)/B
0 ∼= (A/B0) × Jk,A is the natural projection. This corresponds to

[NW14, (6.5.9)] and hence, we can translate [NW14, Thm. 6.5.6] to the parabolic setting as follow

Lemma 3.4. There exists a compactification X̄k(f) of Xk(f), and a positive integer ℓ0 such that

mJkf (r, Z̄) = o(Tf (r)) ∥,

TJkf (r, ωZ̄) ≤ N
[ℓ0]
Jkf

(r, Z) + o(Tf (r)) ∥,

where Z̄ denotes the closure of Z in X̄k(f).

Our next target is to show that the impact of Jkf and a subvariety of Xk(f) of codimension ≥ 2 is
relatively small.

Lemma 3.5. Let Z ⊂ Xk(f) be a subvariety with codimXk(f) Z ≥ 2. Then

(3.3) TJkf (r, ωZ̄) = o(Tf (r)) ∥,
in particular we have

(3.4) NJkf (r, Z) = o(Tf (r)) ∥ .

This result is an analog of [NW14, Thm. 6.5.17], where the proof follows the same lines, except a small
needed modification in the first reduction. We reduce to the case where A admits a splitting A = B × C,
where B,C are semi-abelian varieties of positive dimensions with

B ⊂ St(Xk(f))
0, ∀ k ≥ 0

and TqB◦f (r) = o(Tf (r)) ∥,

where qB : A → A/B = C denotes the second projection. To do this, we consider the set B of all semi-
abelian subvarieties B ⊂ A such that

TqB◦f (r) = o(Tf (r)) ∥ .
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We then use (3.2) and continue the arguments as in the proof of [NW14, Thm. 6.5.17]. Note that since we
only work with A = (C∗)n, the result in [NW14, Lem.6.5.25] is automatically satisfied without using the
simple connected condition on C to lift the curve to the universal coverings. In view of Lemma 3.4, it is
enough to show that

N
[1]
Jkf

(r, Z) = o(Tf (r)) ∥ .

Using the induction on the dimension of Z, it is enough to check the above estimate for the nonsingular
part Zns of Z. Following the same lines as in [NW14, 6.5.3], we can find a sequence n(ℓ) such that
limℓ→∞

n(ℓ)
ℓ = 0 and

(ℓ+ 1)N
[1]
Jkf

(r, Zns) ≤ n(ℓ)O(Tf (r)) + o(Tf (r)) ∥,

which yields the required estimate. This finish the proof of the Lemma 3.5. □
End of the proof of Theorem 3.1. We follow the proof of [NW14, subsection 6.5.4]. It is enough to

consider the case where Z is a reduced Weil divisor on Xf (f) with the irreducible decomposition Z =∑
i Zi. Using 3.4, we have

TJkf (r, ωZ̄) ≤ N
[ℓ0]
Jkf

(r, Z) + o(Tf (r)) ∥,

≤ N
[1]
Jkf

(r, Z) + ℓ0
∑
i<j

N
[1]
Jkf

(r, Zi ∩ Zj) + ℓ0
∑
i

N
[1]
Jk+1f

(r, J1(Zi)) + o(Tf (r)) ∥ .(3.5)

Since codimXk(f)(Zi∩Zj) ≥ 2 for i ̸= j, the second term in the right hand side of (3.5) can be estimated
using Lemma 3.5:

ℓ0
∑
i<j

N
[1]
Jkf

(r, Zi ∩ Zj) = o(Tf (r)).

We now treat the third term of (3.5). We consider two cases depending on the position of B0
k+1 :=

St0A(Xk+1(f))with respect to St0(Zi).

(1) In the case where B0
k+1 ̸⊂ St0(Zi), we have ([NW14, Lem. 6.6.50]):

codimXk+1(f)(Xk+1(f) ∩ J1(Zi) ≥ 2,

where we can apply Lemma 3.5 to obtain

N
[1]
Jk+1f

(r, J1(Zi)) = o(Tf (r)).

(2) In the case where B0
k+1 ⊂ St0(Zi), we consider the natural projection q

B0
k+1

k : Xk(f) → Xk(f)/B
0
k+1.

The image of Zi under this map is contained in a divisor on Xk(f)/B
0
k+1, and hence, we can argue

as in [NW14, Thm. 6.5.6, case (a)] to get

N
[1]
Jk+1f

(r, J1(Zi)) ≤ NJk+1f (r, J1(Zi)) = o(Tf (r)).

This finishes the proof of Theorem 3.1.
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4. HOLOMORPHIC CURVES FROM A PARABOLIC RIEMANN SURFACE INTO PROJECTIVE SPACES

A family {Di}1≤i≤q of q ≥ n + 2 hypersurfaces in Pn(C) is said to be in general position if any n + 1
hypersurfaces in this family have empty intersection, namely

∩ı∈IDi = ∅ ∀ I ⊂ {1, 2, . . . , q}, |I| = n+ 1.

In [Ru04], the author confirms a conjecture of Shiffman by extending the classical Cartan’s Second Main
Theorem to the case of nonlinear targets. In the parabolic context, this result reads as follows.

Theorem 4.1. Let Y be a parabolic Riemann surface. Let {Di}1≤i≤q be a family of q ≥ n+2 hypersurfaces
in general position in Pn(C). Then for any algebraically nondegenerate holomorphic curve f : Y → Pn(C),
there exists a positive constant C such that

(q − n− 1)Tf (r) ≤
q∑

i=1

Nf (r,Di)

deg(Di)
+ CX(r) + o(Tf (r)) ∥ .

The proof follows the same lines as in [Ru04], where the filtration method of Corjava-Zannier [CZ04]
was employed to reduce the problem to the linear case [Ru97, Voj97].

5. PROOF OF THE MAIN THEOREM

Let f : C → Pn(C) be a holomorphic curve and let D =
∑n+1

i=1 Di be a simple normal crossing divi-
sor on Pn(C). Let Qi be the homogeneous polynomials defining Di. Let F : Pn(C) → Pn(C) be the
endomorphism of degree d = lcm(d1, . . . , dn+1) defined by

F (z) := [Qm1
1 (z) : · · · : Qm+1

n+1 (z)],(5.1)

where dimi = d. By construction, F sends the complement of D in Pn(C) to (C∗)n. Its critical points are
consisted in the hypersurfaces Di with multiplicities mi−1 and a hypersurface V of degree

∑n+1
i=1 di−(n+

1) > 0 defined by

det

(
∂Qi

∂zj

)
0≤i,j≤n

= 0.

Putting the generic condition that V , together with the complements of D form a family of hypersurfaces
in general position, namely V ∩ (∩i∈IDi) = ∅ for any I ⊂ {1, . . . , n + 1}, |I| = n. Set g := F ◦ f and
W = F (V). It is not hard to check that

Tg(r) = O(Tf (r)).

We notice that if the curve f meets V at a point P , then g tangents with W at the point F (P ). More precisely,
we have

Proposition 5.1. [NWY07, Thm 3.12]

ordz g
∗W ≥ ordz f

∗V + 1 (∀ z∈C).

Now put E = f−1(D), which is a closed, countable set of points in C. Suppose that E = {ai}∞i=1. Note
that the number of ai in the disc Dt is exactly n

[1]
f (t,D), which is finite. Denote by f̃ , g̃ the restriction on
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Y := C \ E of f , g respectively. Following [PS14, 4.1, example 2], let (ri)i be a sequence of positive real
numbers, such that all the discs or radii ri centered at ai are disjoints. We define the exhaustion σ for Y as

log σ = log+|z|+
∞∑
i=1

log+ ri
|z − ai|

.

Note that here the function τ = log σ is not necessary outside compact set. Nevertheless, the Jensen formula
is still valid under the following form∫ r

1

dt

t

∫
Bt

ddcv =

∫
Sr

vdµr −
∫
Br

vddcτ,

where v : Y → [−∞,+∞) is a function defined on Y such that locally near any point of Y it can be written
as a difference of two subharmonic functions. Furthermore, basic computation yields Br ⊂ ∆r and

(5.2) Xσ(r) = N
[1]
f,σ(r,D) ≤ N

[1]
f (r,D) + log r.

Suppose on the contrary that (1.1) does not hold. Then the weighed Euler characteristic X(r) satisfies

lim sup
r→∞

X(r)

T
f̃ ,σ

(r)
.

This allow us to use all of the previous results. First, apply Theorem 4.1, we have

(5.3) T
f̃ ,σ

(r) ≤
N

f̃ ,σ
(r,V)

degV
+ o(T

f̃ ,σ
(r)) ∥ .

Applying Corollary 3.2 for g̃, we have

(5.4) Ng̃,σ(r,W)−N
[1]
g̃,σ(r,W) = o(Tg̃,σ(r)) ∥ .

On the other hand, it follows from Prop. 5.1 that

(5.5) N
f̃ ,σ

(r,V) ≤ Ng̃,σ(r,W)−N
[1]
g̃,σ(r,W).

Combining (5.3), (5.4), (5.5), we obtain

T
f̃ ,σ

(r) ≤
N

f̃ ,σ
(r,V)

degV
+ o(T

f̃ ,σ
(r)) ∥

≤
Ng̃,σ(r,W)−N

[1]
g̃,σ(r,W)

degV
+ o(T

f̃ ,σ
(r)) ∥

= o(Tg̃,σ(r)) + o(T
f̃ ,σ

(r)) ∥,

which is a contradiction. This finishes the proof of the Main Theorem.

Remark 5.2. In the case where f : C → P2(C) is an algebraically nondegenerate holomorphic curve, C is
the collection of two lines and one conic in P2(C), in a private note, Noguchi could obtain a weak Second
Main Theorem of the form

Tf (r) ≤ αNf (r, C) + [N
[2]
f (r,V)−N

[1]
f (r,V)] + o(Tf (r)) ∥,



where V is the critical curve of the endomorphism defined as above. Although the right hand side of the
above inequality involves a quantity depending on V (which actually counts the number of tangent points of
f and V), this term is negligible when f omits C.

Remark 5.3. Our result can be extended to the case of entire holomorphic curves into algebraic varieties of
log-general type X with q(X) = dimX .
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[Car33] Henri Cartan. Sur les zéros des combinaisons linéaires de p fonctions holomorphesdonnées. Mathematica, 7:80–103,

1933. ↑ 2
[CZ04] Pietro Corvaja and Umberto Zannier. On a general Thue’s equation. Amer. J. Math., 126(5):1033–1055, 2004. ↑ 8
[Dar16a] Lionel Darondeau. On the logarithmic Green-Griffiths conjecture. Int. Math. Res. Not. IMRN, (6):1871–1923, 2016. ↑ 2
[Dar16b] Lionel Darondeau. Slanted vector fields for jet spaces. Math. Z., 282(1-2):547–575, 2016. ↑ 2
[Deb05] Olivier Debarre. Varieties with ample cotangent bundle. Compos. Math., 141(6):1445–1459, 2005. ↑ 2
[DL01] Gerd-Eberhard Dethloff and Steven Shin-Yi Lu. Logarithmic jet bundles and applications. Osaka J. Math., 38(1):185–

237, 2001. ↑ 5
[DSW95] Gerd-Eberhard Dethloff, Georg Schumacher, and Pit-Mann Wong. Hyperbolicity of the complements of plane algebraic

curves. Amer. J. Math., 117(3):573–599, 1995. ↑ 2
[ES91] Alexandre Eremenko and Mikhail Sodin. Distribution of values of meromorphic functions and meromorphic curves

from the standpoint of potential theory. Algebra i Analiz, 3(1):131–164, 1991. ↑ 2
[Fuj93] Hirotaka Fujimoto. Value distribution theory of the Gauss map of minimal surfaces in Rm. Aspects of Mathematics,

E21. Friedr. Vieweg & Sohn, Braunschweig, 1993. ↑ 1
[GG80] Mark Green and Phillip Griffiths. Two applications of algebraic geometry to entire holomorphic mappings. In The Chern

Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), pages 41–74. Springer, New York-Berlin, 1980. ↑ 1
[GP85] Hans Grauert and Ulrike Peternell. Hyperbolicity of the complement of plane curves. Manuscripta Math., 50:429–441,

1985. ↑ 2
[HVX19] Dinh Tuan Huynh, Duc-Viet Vu, and Song-Yan Xie. Entire holomorphic curves into projective spaces intersecting a

generic hypersurface of high degree. Ann. Inst. Fourier (Grenoble), 69(2):653–671, 2019. ↑ 2
[Kob70] Shoshichi Kobayashi. Hyperbolic manifolds and holomorphic mappings, volume 2 of Pure and Applied Mathematics.

Marcel Dekker, Inc., New York, 1970. ↑ 1
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