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BUBBLING OF THE PRESCRIBED Q-CURVATURE EQUATION ON

4-MANIFOLDS IN THE NULL CASE

QUÓ̂C ANH NGÔ AND HONG ZHANG

ABSTRACT. Analog to the classical result of Kazdan–Warner for the existence of so-

lutions to the prescribed Gaussian curvature equation on compact 2-manifolds without

boundary, it is widely known that if (M, g0) is a closed 4-manifold with zero Q-curvature

and if f is any non-constant, smooth, sign-changing function with
∫
M

f dµg0
< 0, then

there exists at least one solution u to the prescribed Q-curvature equation

Pg0u = fe4u,

where Pg0 is the Paneitz operator which is positive with kernel consisting of constant

functions. In this paper, we fix a non-constant smooth function f0 with

max
x∈M

f0(x) = 0,

∫
M

f0 dµg0 < 0

and consider a family of prescribed Q-curvature equations

Pg0u = (f0 + λ)e4u,

where λ > 0 is a suitably small constant. A solution to the equation above can be obtained

from a minimizer uλ of certain energy functional associated to the equation. Firstly, we

prove that the minimizer uλ exhibits bubbling phenomenon in a certain limit regime as

λ ց 0. Then, we show that the analogous phenomenon occurs in the context of Q-

curvature flow.

1. INTRODUCTION

The problem of describing the set of curvatures that a given manifold can possess is of

importance in Riemannian geometry over the last 50 years starting from a seminal paper

in 1960, or even before, due to Yamabe [Yam60] for the existence of conformal metrics

of constant scalar curvature on closed manifolds of dimension n > 3. Without limiting

to the case of constant scalar curvature, this problem is known as the prescribed scalar

curvature problem and has been a main research topic in conformal geometry in recent

decades. An analogue problem for manifolds of dimension 2, known as the prescribed

Gaussian curvature problem, can be formulated in a similar way.

1.1. The Kazdan–Warner result for the scalar curvature equation. Let (M, g0) be

a compact surface without boundary. Given a smooth function f on M , the prescribed

Gaussian curvature problem asks if there exists a conformal metric g such that the Gaussian

curvature of g is equal to f . By writing g = e2ug0, the Gaussian curvature of the metric g,

denoted by Kg, satisfies the transformation law

Kg = e−2u(−∆g0u+Kg0).

This enables us to reduce the prescribed Gaussian curvature problem to the problem of

solving the semilinear PDE

−∆g0u+Kg0 = fe2u (1.1)
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2 Q.A. NGÔ AND H. ZHANG

Since Eq.(1.1) is conformally covariant, we obtain that if v solves

−∆g1v +Kg1 = fe2v

for some g1 = e2wg0, then u = v + w solves (1.1). This together with the uniformization

theorem implies that we can freely choose the background metric g0 in such a way that

Kg0 is a constant whose sign depends on the Euler characteristic of M . In the case that M
has genus one, namely, M is the torus, Eq. (1.1) becomes

−∆g0u = fe2u (1.2)

on M . In [KW74], Kazdan and Warner proved the following result:

Theorem 1.1 (see Kazdan–Warner [KW74]). There is a solution u to (1.2) if, and only if,

either f ≡ 0, or if the function f changes sign and satisfies
∫

M

f dµg0 < 0. (1.3)

A solution u to (1.2) can be obtained by minimizing the Liouville energy

E(u) =
1

2

∫

M

|∇u|2 dµg0

in the class

Cf =
{
u ∈ H1(M, g0) :

∫

M

fe2u dµg0 = 0
}
.

We note that the constraint
∫
M

fe2u dµg0 = 0 in the class Cf is quite natural in view of

the Gauss–Bonnet theorem. Since the energy E and the constraint in Cf is left unchanged

up to a constant addition, in order to show existence of a minimizer for E in the class Cf ,

one often restricts attention to those functions with vanishing mean. To be precise, we look

for minimizer of E within the set

C′
f =

{
u ∈ H1(M, g0) :

∫

M

fe2u dµg0 = 0,

∫

M

u dµg0 = 0
}
.

However, normalizing the volume will work equally well, that is, we can also look for

minimizer of E within the set

C∗
f =

{
u ∈ H1(M, g0) :

∫

M

fe2u dµg0 = 0,

∫

M

e2u dµg0 = vol(M, g0)
}
.

In [Gal15], Galimberti showed “bubbling” of the Kazdan–Warner metrics in a certain limit

regime. To describe his result, we let f0 be a non-constant and smooth function with

maxM f0 = 0. Let λ > 0 be small such that fλ = f0 + λ changes sign and satisfies (1.3).

Therefore, by Theorem 1.1 there exists a solution ûλ to (1.2), which can be obtained from

a minizer uλ of E in the set C∗
fλ

with f replaced by fλ. In fact, one can easily see that ûλ

and uλ differ by a positive constant cλ. With a delicate argument, he is able to control the

total curvature of the conformal metrics ĝλ = e2ûλg0 for suibtable λ ց 0 and hence to

show that after rescaling the metrics suitably near local maximum points of f , one or more

“bubbles” may be extracted from ĝλ; see [Gal15, Theorem 1.1].

Recently, Struwe [Str17] improves the result in [Gal15] by obtaining a more precise

characterization of the bubbling. He shows that “slow blow-up” does not occur; see [Str17,

Theorem 1.2]. This is achieved with the help of a new Liouville-type result; see [Str17,

Theorem 1.3]. It is remarkable that the method developed in [Str17] is flexible enough

to apply also in the presence of perturbation leading to a similar “bubbling” phenomenon

for a family of prescribed curvature flows for fλ with suitably chosen initial data in Cfλ ;

see [Str17, Theorem 1.5].

In the last paragraph of Subsection 1.5 in [Str17], Struwe comments on future investi-

gation of “bubbling” metrics of prescribing Q-curvature equation in arbitrary even dimen-

sions n > 4. Inspired by his interesting work and comments, we aim to study the bubbling
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behavior of the prescribedQ-curvature equation in the null case. In fact, we have borrowed

many ideas from [Str17] in the proof of the main theorems in the paper.

1.2. A Kazdan–Warner type result for the Q-curvature equation. Let (M, g0) be a

closed 4-dimensional Riemannian manifold endowed with a smooth background metric

g0. An analogue of the conformal Laplacian in dimension 2 is the Paneitz operator Pg0

discovered by [Pan82]. To be more precise, it is defined in terms of the Ricci tensor Ricg0
and the scalar curvature scalg0 as

Pg0 = ∆2
g0 − divg0

(
(
2

3
scalg0 g0 − 2Ricg0)d

)
.

Associated to the Paneitz operator Pg0 , Branson [Bra85] found the Q-curvature which

enjoys many similar properties as the Gaussian curvatue in dimension 2. It is also given,

in terms of the Ricci tensor Ricg0 and the scalar curvature Rg0 , by

Qg0 = −1

6

(
∆g0 scalg0 −R2

g0 + 3|Ricg0 |2
)
.

An important topic about the Q-curvature is the prescribed Q-curvature problem which is

formulated as follows. Given a smooth function f on M , one may ask if there exists a

conformal metric g = e2ug0 with Q-curvature Qg = f . To solve the geometric problem is

equivalent to finding the solution to the fourth order semilinear PDE.

Pg0u+Qg0 = fe4u. (1.4)

There are many research works on the equation (1.4), see, for instance, [BFR06, Bre03,

CY95, DM08, L LL12, MS06, WX98] and references therein.

In this paper, we consider the prescribed Q-curvature equation on 4-manifolds in the

null case, that is,
∫
M

Qg0 dµg0 = 0. Due to the resolution of the constant Q-curvature

problem, we may assume, w.l.o.g., that the background metric g0 has the null Q-curvature.

Then the equation (1.4) becomes

Pg0u = fe4u. (1.5)

If f 6≡ 0, then it is necessary that f changes sign for the existence of a solution to (1.5),

since
∫
M

fe4u dµg0 = 0. However, unlike the two-dimensional case,
∫
M

f dµg0 < 0 is

not necessary anymore. The following result shows that
∫
M f dµg0 < 0 is still sufficient.

Theorem 1.2 (see Ge-Xu [GX08]). Let (M, g) be a compact, oriented four-dimensional

Riemannian manifold. Assume that the Paneitz operator Pg0 is positive with kernel con-

sisting of constant functions. If

sup
M

f > 0 and

∫

M

f dµg0 < 0,

then there exists a smooth solution to (1.5).

In [GX08], Ge and Xu proved that a solution to (1.5) may be obtained by minimizing

the energy

E (u) = 2〈Pg0u, u〉
under the constraint

F =

{
u ∈ H2(M, g0) :

∫

M

fe4u dµg0 = 0 and

∫

M

u dµg0 = 0

}
.

Here, for u, v ∈ H2(M, g0), the inner product 〈Pg0u, v〉 is defined as follows

〈Pg0u, v〉 =
∫

M

[
∆g0u∆g0v +

2

3
Rg0g0(∇g0u,∇g0v)− 2Ricg0(∇g0u,∇g0v)

]
dµg0 .
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However, similar to the case of (1.2), the authors showed, in [NZ17, Theorem A.1], that

the way of searching a solution is still successful if we minimize E (u) under the following

constraint

X∗
f =

{
u ∈ H2(M, g0) :

∫

M

fe4u dµg0 = 0 and

∫

M

e4u dµg0 = 1

}
.

2. MAIN RESULTS

We shall study “bubbling” of the prescribed Q-curvature equation on 4-manifolds in

two different contexts: the static case and the flow case.

2.1. Bubbling metrics in the static case. As in [Gal17, Str17] , we let f0 be a smooth,

non-constant function with maxx∈M f(x) = 0, and let fλ = f0 + λ for any λ ∈ R. By

assuming that vol(M, g0) = 1, we find that if

0 < λ < −
∫

M

f0 dµg0 := λ0, (2.1)

then fλ changes sign and
∫
M fλ dµg0 < 0. Hence, it follows from Theorem 1.2 that there

exists a solution ũλ to (1.5) with f replaced by fλ. In addition, [NZ17, Theorem A.1]

implies that ũλ can be obtained as

ũλ = uλ + cλ

from a minimizer uλ of E in the set X∗
fλ

. Here uλ satisfies

Pg0uλ = αλfλe
4uλ , (2.2)

with αλ > 0 and cλ = (logαλ)/4. Moreover, by setting

g̃λ = e2ũλg0,

we have

αλ = e4cλ =

∫

M

e4(uλ+cλ) dµg0 = vol(M, g̃λ). (2.3)

Also, set

βλ := E (uλ) = min
{
E (u) : u ∈ X∗

fλ

}
. (2.4)

Then one will see from Lemma 4.1 below that βλ → +∞ as λ ց 0; Thus, one should

expect the bubbling phenomenon associated with the family of metrics g̃λ to occur.

The purpose of this part of the paper is to characterize the bubbling behavior of g̃λ.

First, when the function f0 has only non-degenerate maxima, we have the following result:

Theorem 2.1. Assume that the Paneitz operator Pg0 is positive with kernel consisting of

constant functions. Let f0 6 0 be a smooth, non-constant function with maxM f0 = 0
having only non-degenerate maximum points. Then for suitable λk ց 0, for uk = uλk

as

above and suitable I ∈ N, r
(i)
k ց 0, x

(i)
k → x

(i)
∞ ∈ M with f0(x

(i)
∞ ) = 0, i 6 i 6 I , as

k → +∞ the following hold:

(i) uk → −∞ locally uniformly on M∞ = M\{x(i)
∞ : 1 6 i 6 I}.

(ii) In normal coordinates around x
(i)
∞ , set

z
(i)
k = exp−1

x
(i)
∞
(x

(i)
k ), ũk = uk ◦ expx(i)

∞
.

Then for each 1 6 i 6 I , either
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(a) lim supk→∞ r
(i)
k /

√
λk = 0 and

ûk(z) := ũk

(
z
(i)
k + r

(i)
k z

)
+ log r

(i)
k → û∞(z)

strongly in H4
loc(R

4), where û∞, up to a translation and a scaling, is given

by

û∞(z) = log

(
4
√
6

4
√
6 + |z|2

)

and it induces a spherical metric

ĝ∞ = e4û∞gR4

of Q-curvature

Qĝ∞ ≡ 1

on R
4 and 1 6 I 6 4, or

(b) lim supk→∞ r
(i)
k /

√
λk > 0 and

ûk(z) := ũk

(
z
(i)
k + r

(i)
k z

)
+ log r

(i)
k → û∞(z)

strongly in H4
loc(R

4), where û∞, up to a translation and a scaling, solves

∆2
zû∞(z) =

(
1 +

1

2
Hessf0

(
x(i)
∞
)[
z, z

])
e4û∞(z), (2.5)

In addition, the metric

ĝ∞ = e4û∞gR4

on R
4 has finite volume and finite total Q-curvature

Qĝ∞(z) = 1 +
1

2
Hessf0

(
x(i)
∞
)[
z, z

]

and 1 6 I 6 8.

Remark 2.2. Unlike the Struwe’s result in [Str17], the “slow blow-up” case (b) is unable

to be ruled out here. In fact, the limiting equation (2.5) associated with blow-up points x
(i)
∞

with 1 6 i 6 I may have a solution with finite energy and finite total curvature. To see

this, one may apply a general existence result due to Chang and Chen [CC01] to obtain

that there is a solution to

∆2
z û∞ =

(
1 +

1

2
Hessf0

(
x(i)
∞
)[
z, z

])
e4û∞

with ∫

R4

e4û∞(z) dz < +∞.

and ∫

R4

(
1 +

1

2
Hessf0

(
x(i)
∞
)
[z, z]

)
e4û∞(z) dz < +∞.

Since x
(i)
∞ is a non-degenerate maxima of f0, the matrix Hessf0(x

(i)
∞ ) is negative definite.

Consequently, we also have
∫

R4

∣∣∣1 + 1

2
Hessf0

(
x(i)
∞
)
[z, z]

∣∣∣e4û∞(z) dz < +∞.

Now, we consider the case that the function f0 may have a degenerate maxima. To

describe our next result, motivated by [Str17], we propose the following condition on f0
analog to Condition A in [Str17].
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Condition A: Let M0 = {x ∈ M : f0(x) = 0} and d(x) = dist(x,M0) for x ∈ M .

There exist d0 > 0 and A0 > 0 such that, letting

K0 =
{
z = (z1, z2, z3, z4) ∈ R

4 :

√√√√
3∑

i=1

(zi)2 < z4, |z| < d0

}

for any x ∈ M with 0 < d(x) < d0 there is a rotated copy Kx ⊂ R
4 of K0 with vertex at

x such that in Euclidean coordinates z around x = 0 there holds

A0 inf
z∈Kx

|f0(expx(z))| > |f0(x)|.

Since any function on a closed manifold with only non-degenerate maxima admits finitely

many maximum points, it is then clear to see that Condition A is automatically satisfied

by such functions. Let us take one example of a function f0 satisfying Condition A. We

use (r, θ1, θ2, θ3) to denote the polar coordinates in the Euclidean space R
4. Let f0 be as

follows

f0(r, θ1, θ2, θ3) =





0 if r 6 1,

−e−1/(r−1)
( 3∑

i=1

sin
( 1

r − 1
+ θi

)
+ 4

)
if r > 1.

Then it is straightforward to verify that the function f0 above satisfies Condition A with

A0 = 7. Furthermore, f0 has degenerate maximum points.

Return to characterizing the bubbling behavior of g̃λ in the degenerate situation, our

second result reads as follows.

Theorem 2.3. Assume all the conditions, expcept for the assumption of the non-degeneracy

of the function f0 at a maxima, in Theorem 2.1 above. If, in addition, (M, g0) is locally

conformally flat and f0 satisfies the Condition A with d0, A0 > 0, then for uk defined as

in the Theorem 2.1 there exist suitable I ∈ N with I 6 8, r
(i)
k ց 0 and x

(i)
k → x

(i)
∞ ∈ M

with f0(x
(i)
∞ ) = 0, 1 6 i 6 I such that the following hold

(i) uk → −∞ locally uniformly on M∞ = M\{x(i)
∞ : 1 6 i 6 I}.

(ii) For each 1 6 i 6 I , we have

ûk(z) := ũk

(
z
(i)
k + r

(i)
k z

)
+ log r

(i)
k → û∞(z)

strongly in H4
loc(R

4), where z
(i)
k = exp−1

x
(i)
∞
(x

(i)
k ) and û∞ induces a metric

ĝ∞ = e4û∞gR4

on R
4 of locally bounded curvature and of volume less than or equal 1.

Remark 2.4. By comparing Theorems 2.1 and 2.3, one can easily notice that in the degen-

erate case we made an extra assumption on the manifold (M, g0) except for the Condition

A, that is, we require the manifold (M, g0) to be locally conformally flat. It would be

interesting to investigate the bubbling phenomenon in the degenerate situation without as-

suming the locally conformal flatness.

2.2. Bubbling metrics along the prescribed curvature flow. In contrast to the statics

case, our second goal is to obtain an analogous bubbling behavior described in Theorem

2.1 for a family of prescribed Q-curvature flows for fλ with suitably chosen initial data in

Xfλ , where

Xfλ =
{
u ∈ H2(M) :

∫

M

fλe
4u dµg0 = 0

}
.
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To describe our second result precisely, let us briefly recall the prescribed Q-curvature flow

introduced in [NZ17]. Let gλ(t) = e2uλ(t)g0 be a family of time-dependent conformal

metrics satisfying
∂gλ
∂t

= −2(Qgλ − αλ(t)fλ)gλ

with the initial conformal metric gλ(0) = e2u0λg0. In terms of uλ(t), the evolution equa-

tion above becomes
∂uλ

∂t
= αλ(t)fλ −Qgλ (2.6)

with the initial data

uλ(0) = u0λ ∈ Xfλ .

The function αλ = αλ(t) is chosen in such a way that
∫
M

fλ dµgλ remains constant,

namely,

d

dt

∫

M

fλ dµgλ = 4

∫

M

uλtfλ dµgλ = 4

∫

M

(αλfλ −Qgλ)fλ dµgλ = 0. (2.7)

Solving (2.7) for αλ gives

αλ =

∫
M fλQgλ dµgλ∫

M
f2
λ dµgλ

.

It is easy to verify that

uλ(t) ∈ Xfλ

for all t > 0. We thus have by conformal invariant of Q-curvature that

1

4

d

dt
vol(M, gλ(t)) =

∫

M

uλt dµgλ
= αλ

∫

M

fλ dµgλ
−
∫

M

Qgλ dµgλ
= 0.

Normalizing the initial metric gλ(0) to satisfy vol(M, gλ(0)) = 1, we then get

vol(M, gλ(t)) =

∫

M

dµgλ
=

∫

M

dµgλ(0)
= 1 (2.8)

for all t > 0. This implies that

uλ(t) ∈ X∗
fλ (2.9)

for all t > 0.

By applying [NZ17, Theorem 1.1] to fλ, we obtain the sequential convergence of the

flow (2.6).

Theorem 2.5 (see Ngô–Zhang [NZ17]). The flow (2.6) has a smooth solution uλ(t) on

[0,+∞). Moreover, there exists a suitable time sequence (tj)j with tj → +∞ as j → +∞
and a suitable non-zero constant α∞λ ∈ R such that uλ(tj) → u∞λ in C∞(M, g0),
|αλ(tj)− α∞λ| → 0 and ‖Qgλ(tj) − α∞λfλ‖C∞(M,g0) → 0 as j → +∞. Finally, u∞λ

satisfies

Pg0u∞λ = α∞λfλe
4u∞λ .

For any 0 < λ < λ0 and any σ ∈ (−σ0, 0), with the number σ0 = σ0(λ) to be

determined in Lemma 5.2 below, we choose uσ
0λ ∈ X∗

fλ
such that

E (uσ
0λ) 6 βλ + σ2.

For such an initial data uσ
0λ, it follows from Theorem 2.5 that the flow (2.6) possesses the

smooth solution uσ
λ = uσ

λ(t) with ασ
λ = ασ

λ(t). Unlike the case of prescribed Gaussian

curvature flow in the dimension two, the sign of α∞λ in the Q-curvature flow is unable

to be determined. So, we have to assume that there exist a sequence (λk)k, k ∈ N with

λk ց 0 as k → +∞ such that α∞λk
> 0 for all k large. With σk and Tk defined by (5.6)

below, we let, for a suitable time sequence (tk)k with tk > Tk,

uk = uσk

λk
(tk), αk = ασk

λk
(tk). (2.10)
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Now, our second result reads as

Theorem 2.6. Let f0 be, respectively, as in the Theorems 2.1 and 2.3 above. Then for

λk ց 0 with α∞λk
> 0, suitable u0λk

∈ X∗
fλk

with E (u0λk
) − βλk

6 σ2
k ց 0, and

sufficiently large tk > Tk → +∞ as k → +∞, the conclusions of Theorems 2.1 and 2.3

hold for uk defined by (2.10).
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CONTENTS

1. Introduction 1

1.1. The Kazdan–Warner result for the scalar curvature equation 1

1.2. A Kazdan–Warner type result for the Q-curvature equation 3

2. Main results 4

2.1. Bubbling metrics in the static case 4

2.2. Bubbling metrics along the prescribed curvature flow 6

3. Notations and preliminaries 8

4. Bubbling in the static case 10

4.1. Bounds for total curvature 10

4.2. Concentration of curvature 14

4.3. Blow-up analysis 20

5. Bubbling along the flow 39

5.1. Bounds for total curvature along the flow 39

5.2. Bubbling of the prescribed curvature flow 42

Acknowledgments 43

References 43

3. NOTATIONS AND PRELIMINARIES

In this brief section, we collect some useful facts frequently used throughout the paper.

First, given a function w on M , let us denote by w the average of w over (M, g0), namely,

w =

∫

M

w dµg0 .

(Keep in mind that vol(M, g0) = 1.) We shall use a double bar for w, namely w, if we

want to emphasize that the average of w is taking over M with any other conformal metric.

Recalling that the higher order Moser–Trudinger inequality for Paneitz operator Pg0 ,

known as Adam’s inequality; see [Ada88, Theorem 2] states that if Pg0 is self-adjoint and

positive with kernel consisting of constant functions, then there is some constant CA > 0
such that ∫

M

exp
(
32π2 (u− u)2

〈Pg0u, u〉
)

dµg0 6 CA (3.1)
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for every u ∈ H2(M, g0). As a consequence of (3.1) and Young’s inequality, we obtain

the following inequality
∫

M

exp
(
α(u − u)

)
dµg0 6CA exp

( α2

128π2
〈Pg0u, u〉

)
(3.2)

for all real number α.

Now we collect some information of Green’s function, denoted by G, of the Paneitz

operator Pg0 . By the results in [CY95], Green’s function G is symmetric and fulfills the

following properties:

(P1) G is smooth on M ×M\diagonal;

(P2) there exists a positive constant CG depending only on (M, g0) such that
∣∣∣G(x, y)− 1

8π2
log

1

d(x, y)

∣∣∣ 6 CG

for any x, y ∈ M with x 6= y; while for its derivatives and for 1 6 j 6 3 there

holds
∣∣∇j

G(x, y)
∣∣ 6 CG

d(x, y)j

for any x, y ∈ M with x 6= y.

As clearly described in [Mal06, page 145], the higher order estimates in (P2) are not shown

in [CY95] but they can be derived with the same approach, by an expansion of G at higher

order using the parametrix.

It is well known that if ϕ ∈ L1(M, g0) with ϕ = 0, then w solves

Pg0w = ϕ,

if and only if

w(x) = w +

∫

M

G(x, y)ϕ(y) dµg0 . (3.3)

For convenience, we cite the following lemma proved in [Mal06, Lemma 2.3].

Lemma 3.1. Let (wk)k and (ϕk)k be two sequences of functions on (M, g0) satisfying

Pg0wk = ϕk

with ‖ϕk‖L1(M,g0) 6 α0 for some positive constant α0 independent of k. Then for any

x ∈ M , any small r > 0, and any s ∈ [1, 4/j) with j = 1, 2, 3, there holds
∫

Br(x)

|∇jwk|s dµg0 6 Cr4−js,

where C, independent of k, is a positive constant depending only on α0,M , and s.

To end the section, we provide the following concentration-compactness result proved

in [Mal06, Proposition 3.1].

Proposition 3.2. Let (wk)k and (ϕk)k be two sequences of functions on (M, g0) satisfying

Pg0wk = ϕk

with ‖ϕk‖L1(M,g0) 6 α0 for some positive constant α0 independent of k. Then, up to a

subsequence, we have one of the following alternatives:

(i) either there exist some constant s > 1 and some positive constant C independent

of k such that ∫

M

e4s(wk−wk) dµg0 6 C,
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(ii) or there exist points x1, x2, . . . , xL ∈ M such that for any r > 0 and any i ∈
{1, . . . , L} one has

lim inf
k→+∞

∫

Br(xi)

|ϕk| dµg0 > 8π2.

Remark 3.3. As clearly stated in [Mal06], Proposition 3.2 remains valid if the metric g0
is replaced by a sequence of metrics (gk)k which is uniformly bounded in CN (M, g0) for

any N ∈ N. It also holds true if one replaces M by any bounded open ball in R
4, in which

all the functions are compactly supported.

4. BUBBLING IN THE STATIC CASE

In this section, we are going to prove the “bubbling” phenomena in the static case,

namely, Theorems 2.1 and 2.3.

4.1. Bounds for total curvature. We derive, in this subsection, the bounds for the total

Q-curvature. As an initial step, we show the unboundedness of the minimum energy βλ

defined in (2.4).

Lemma 4.1. As λ ց 0, there holds βλ → +∞.

Proof. Assume by contradiction that βλ 6 C1 for some constant C1. Thanks to uλ ∈ X∗
fλ

,

we can use E (uλ) to bound exp(−4uλ) from above by applying Adams’ inequality (3.2)

as follows

e−4uλ =

∫

M

exp
(
4(uλ − uλ)

)
dµg0 6 CA exp

(
E (uλ)

16π2

)
.

Keep in mind that |f0| = −f0 = λ − fλ. From this together with Hölder’s inequality we

can estimate

0 <
( ∫

M

|f0| dµg0

)2

6

∫

M

|f0|e−4uλ dµg0

∫

M

|f0|e4uλ dµg0

6 ‖f0‖L∞(M,g0)e
−4uλ

∫

M

e−4(uλ−uλ) dµg0

∫

M

(λ − fλ)e
4uλ dµg0

6 λ‖f0‖L∞(M,g0)C
2
A exp

( βλ

8π2

)
,

which is obviously a contradiction if λ is sufficiently small. �

The following monotonicity property result is a key gradient for the uniform bound of

the total Q-curvature of the metric g̃λ = e4ũλg0.

Lemma 4.2. The function λ 7→ βλ is non-increasing in λ for small 0 < λ < λ0 and

lim sup
µցλ

βµ − βλ

µ− λ
6 −αλ,

where λ0 is given in (2.1).

Proof. Fix λ ∈ (0, λ0). As always, let uλ ∈ X∗
fλ

be a minimizer of E as above, namely∫
M fλe

4uλ dµg0 = 0 and
∫
M e4uλ dµg0 = 1. Then for small σ ∈ R we have, by Taylor’s

expansion, that
∫

M

fλe
4(uλ+σfλ) dµg0 =

∫

M

fλ

[
e4(uλ+σfλ) − e4uλ

]
dµg0
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=

∫

M

fλe
4uλ

[
e4σfλ − 1

]
dµg0

=4σ

∫

M

f2
λe

4uλ dµg0 +O(σ2)

and ∫

M

e4(uλ+σfλ) dµg0 =1 +

∫

M

e4uλ

[
e4σfλ − 1

]
dµg0

=1 + 4σ

∫

M

fλe
4uλ dµg0 +O(σ2),

=1 +O(σ2).

So, for 0 < |σ| ≪ 1 sufficiently small, if we let

µ = λ− 4σ

∫

M

f2
λe

4uλ dµg0 +O(σ2),

then we can find some constant c such that

uλ + σfλ + c ∈ X∗
fµ . (4.1)

In particular, for σ < 0 sufficiently close to zero, we have µ > λ and σ = O(µ − λ).
Notice that it follows from (2.2) that

E (uλ + σfλ + c) =2〈uλ + σfλ + c,Pg0uλ + σPg0fλ〉

=E (uλ) + 4σ

∫

M

fλPg0uλ dµg0 +2σ2〈fλ,Pg0fλ〉

=E (uλ) + 4σαλ

∫

M

f2
λe

4uλ dµg0 +O(σ2).

Now, by (4.1), we get that

βµ 6E (uλ + σfλ + c)

6E (uλ) + 4σαλ

∫

M

f2
λe

4uλ dµg0 +O(σ2)

=βλ − αλ(µ− λ) +O((µ − λ)2) < βλ,

for σ < 0 sufficiently close to zero. Hence the map λ 7→ βλ is non-increasing and

lim sup
µցλ

βµ − βλ

µ− λ
6 −αλ

as claimed. �

We can find the following bound on βλ.

Lemma 4.3. There holds

lim sup
λց0

βλ

log(1/λ)
6 64π2.

Proof. Let p0 ∈ M be such that f0(p0) = 0 and assume that λ ∈ (0, λ0). By fixing a

natural number N > 5, we can find a smooth conformal metric gN = e2ϕNg0 such that

det
(
gN

)
= 1 +O(rN )rց0, (4.2)

where r = |x| and x are gN -normal coordinates around p0 which is identified as 0 in this

new coordinate system. Now, letting

A =
1

2
Hessf0(p0).
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Since p0 is an isolated maxima of f0, for a suitable constant L > 0 we have

f0(x) = (Ax, x) +O(|x|3) > −λ

2

on B√
λ/L(0), and therefore fλ > λ/2 on B√

λ/L(0) for all λ ∈ (0, λ0). Fix a cut-off

function τ ∈ C∞
c ([0,∞)) with 0 6 τ 6 1 and

τ(t) =

{
1 if 0 6 t 6 1/2,

0 if t > 1.

For any A0 > 1, we can find a smooth function ξ ∈ C∞([0,∞)) such that 1 6 ξ 6 2,

ξ′ > 0, supt>0 ξ
′(t) 6 A0, and

ξ(t) =

{
t if 0 6 t 6 1,

2 if t > 2.

Then we define

zλ(x) =

{
log(1/λ) if |x| 6 λ,
1
2 log(1/λ) ξ

(
2 log |x|
log(λ)

)
τ(|x|) if λ 6 |x| 6 1.

It is easy to see that zλ ∈ C∞(B1(0)) with supp(zλ) ⊂ B1(0). Finally, we define for

wλ(x) =

{
zλ
(
Lx√
λ

)
if x ∈ B√

λ/L(0),

0 if x ∈ M \B√
λ/L(0).

Then, wλ ∈ C∞(M) with supp(wλ) ⊂ B√
λ/L(0). Consider the continuous function

η : [0,∞) 7→ R defined by

η(s) =

∫

M

fλe
4swλ dµg0 .

It follows from (2.1) that η(0) < 0. On the other hand, by the definition of wλ and the fact

that fλ > λ/2 on B√
λ/L(0), we conclude that

η(s) =

∫

M

fλ dµg0 +

∫

B√
λ/L(0)

fλ
(
e4swλ − 1

)
dµg0

>

∫

M

fλ dµg0 +
λ

2

∫

B√
λ/L(0)

(
e4swλ − 1

)
dµg0 .

This implies that η(s) → +∞ as s ր +∞. Hence, there exists some s(λ) ∈ (0,+∞)
depending on λ such that

0 = η(s) =

∫

M

fλe
4s(λ)wλ dµg0 ,

that is s(λ)wλ ∈ Xfλ . In addition, we may find a constant c(λ) such that

s(λ)wλ + c(λ) ∈ X∗
fλ
.

Now, we provide a more precise estimate of s(λ). Since vol(M, g0) = 1, supp(wλ) ⊂
B√

λ/L(0), and dµgN = e4ϕN dµg0 we get that

0 =

∫

M

fλe
4s(λ)wλ dµg0

=

∫

B√
λ/L(0)

fλe
4s(λ)wλ dµg0 +

∫

M\B√
λ/L(0)

fλ dµg0

>
λ

2

∫

B√
λ/L(0)

e4[s(λ)wλ−ϕN ] dµgN −‖f0‖∞.
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By (4.2), we have dµgN =
√
1 + O(rN )dx. Thus, for any ε ∈ (0, 1), we can find λε ∈

(0, λ0), independent of s, such that for any λ ∈ (0, λε)∫

B√
λ/L(0)

e4[s(λ)wλ−ϕN ] dµgN >(min
M

e−4ϕN )

∫

B√
λ/L(0)

e4s(λ)wλ

√
1 +O(rN ) dx

>(min
M

e−4ϕN )(1− ε)

∫

B√
λ/L(0)

e4s(λ)wλ dx.

It follows from the definition of zλ and after substituting y = Lx/
√
λ that

λ

∫

B√
λ/L(0)

e4s(λ)wλ dx =
λ3

L4

∫

B1(0)

e4s(λ)zλ(y) dy

>
λ3−4s(λ)

L4

∫

B
λ5/4(0)

dy =
π2λ8−4s(λ)

2L4
.

By combining all estimates above, we obtain

1

4L4
(min

M
e−4ϕN )(1 − ε)π2 λ8−4s(λ)

6 ‖f0‖∞.

Solving the preceding inequality for s gives

0 < s(λ) 6 2+
1

4 log(1/λ)
log

(4L4‖f0‖∞ maxM e4ϕN

(1 − ε)π2

)
:= 2+O(1/ log(1/λ)). (4.3)

Next, following the proof of [Gal17, Lemma 3.6], we obtain that given any A0 > 1, there

exists λε ∈ (0, λ0), independent of A0, such that for any 0 < λ < λε there holds

〈Pg0wλ, wλ〉 6 4π2(1 + ε)(A2
0 + 1) log(1/λ) + C0,

where C0 does not depend on neither λ nor ε. Keep in mind that s(λ)wλ + c(λ) ∈ X∗
f

with s(λ) satisfying (4.3). Hence, we have

βλ 62〈Pg0(s(λ)wλ + c), s(λ)wλ + c〉
=2s(λ)2〈Pg0wλ, wλ〉
632π2(1 + ε)(A2

0 + 1) log(1/λ) +O(1).

This implies that

lim sup
λց0

βλ

log(1/λ)
6 32π2(1 + ε)(A2

0 + 1).

Letting ε ց 0 and A0 ց 1 gives the assertion. �

Lemma 4.4. There holds

lim inf
λց0

(λαλ) 6 lim inf
λց0

|λβ′
λ| 6 64π2.

Proof. Notice that the monotone function βλ is differentiable almost everywhere. Then by

Lemma 4.2 we can easily get that

lim inf
λց0

(λαλ) 6 lim inf
λց0

|λβ′
λ|.

So, it remains to show that

lim inf
λց0

|λβ′
λ| 6 64π2.

Indeed, if we assume that for some 0 < λ∗ < λ0, some c0 > 64π2 and almost all

0 < λ < λ∗ the absolutely continuous part of the differential of βλ satisfies |β′
λ| > c0/λ,

then for K = 32π2 + c0/2 > 64π2 and any sufficiently small 0 < λ < λ∗ we have, by

Lebesgue’s theorem, that

βλ − βλ∗ >

∫ λ∗

λ

|β′
λ| dλ
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>K log(1/λ) + (c0 −K) log(1/λ) + c0 logλ∗

>K log(1/λ).

This contradicts the bound in Lemma 4.3. �

With help of this lemma, we can now obtain a bound for the total Q-curvatures of the

metric g̃λ and the normalized metric gλ. Recall that g̃λ = e2ũλg0 with Qg̃λ = fλ and

gλ = e2uλg0 with Qgλ = αλfλ.

Lemma 4.5. There holds

lim inf
λց0

∫

M

|Qgλ | dµgλ = lim inf
λց0

∫

M

|Qg̃λ | dµg̃λ 6 128π2.

Proof. Notice that we can estimate

|Qg̃λ | = |f0 + λ| 6 −f0 + λ = −fλ + 2λ. (4.4)

Keep in mind that αλ = vol(M, g̃λ) and that
∫
M fλ dµg̃λ = 0. Then by (2.3), Lemma 4.4,

and the fact that uλ ∈ X∗
fλ

, we get that

lim inf
λց0

∫

M

|Qg̃λ | dµg̃λ 6 lim inf
λց0

[ ∫

M

(−fλ) dµg̃λ +2λαλ

]

=2 lim inf
λց0

(λαλ) 6 128π2.

Since |Qgλ | = e4cλ |Qg̃λ | and dµgλ = e4uλ dµg0 = e−4cλ dµg̃λ , we deduce that
∫

M

|Qgλ | dµgλ =

∫

M

|Qg̃λ | dµg̃λ ,

we thus complete the proof. �

4.2. Concentration of curvature. In the following, we consider the prescribedQ-curvature

equation with an error term. To be precise, for a suitable sequence λk ց 0 and suitable

αk > 0 we let functions wk ∈ X∗
fλk

with corresponding metrics gk = e2wkg0 solve

Pg0wk = αkfλk
e4wk + hke

4wk (4.5)

with Qgk = αkfλk
+ hk. Then

∫

M

Qgke
4wk dµg0 = 0.

In view of Lemma 4.4, we further assume that αk satisfies

lim sup
k→+∞

(λkαk) 6 64π2. (4.6)

Moreover, we let functions hk on M be such that

‖hk‖L2(M,gk) =: εk → 0 (4.7)

as k → +∞. Denote

hk =

∫

M

hke
4wk dµg0 . (4.8)

Then the assumption (4.7) implies that

|hk| 6 εk and ‖hk − hk‖L1(M,gk) 6 2εk. (4.9)

With all these assumptions, we then have the same conclusion as Lemma 4.5. To see

this, we set

s± = ±max{±s, 0}



BUBBLING OF THE PRESCRIBED Q-CURVATURE EQUATION 15

for any s ∈ R. Upon writing |Qgk | = −Qgk + 2Q+
gk , estimating Q+

gk 6 αkλk + |hk|, and

integrating (4.5) we obtain, by Hölder’s inequality and the assumption (4.7), that

lim sup
k→+∞

∫

M

|Qgk | dµgk =2 lim sup
k→+∞

∫

M

Q+
gke

4wk dµg0

62 lim sup
k→+∞

(
αkλk + ‖hk‖L2(M,gk)

)
6 128π2.

(4.10)

It is worth emphasizing that by allowing the “error term” hk in the perturbed equation

(4.5), we will also be able to apply Theorems 4.7 and 4.8 below in the flow context, where

wk = u(tk) for a solution u = u(t) to (2.6) and ht = ut(tk) for a sequence of times

tk → +∞. On the other hand, by choosing wk = uk ∈ X∗
fλk

, satisfying (4.5) with hk = 0

for all k ∈ N, Theorems 2.1 and 2.3 will become the special cases of Theorems 4.7 and

4.8 below respectively.

It is worth noting that we are not interested in the existence of solutions to (4.5) in

X∗
fλk

under the conditions (4.6) and (4.7). What we are interested in is the concentration

behavior of any sequence of solutions to (4.5) in X∗
fλk

, if exists. To be more precise, we

prove the following concentration result.

Lemma 4.6. Given (wk) a sequence of solutions to (4.5) as above we have αk → +∞ as

k → +∞. Moreover, there exist a suitable positive integer I with I 6 8 and finitely many

points x
(i)
∞ ∈ M with 1 6 i 6 I such that, for any r > 0 and each 1 6 i 6 I , there hold

f0(x
(i)
∞ ) = 0 (4.11)

and

lim inf
k→+∞

∫

Br(x
(i)
∞ )

Q+
gk dµgk > 8π2. (4.12)

Proof. Our proof consists of two parts.

PART 1. We prove (4.12) for 1 6 i 6 I and αk → +∞ as k → +∞.

By way of contradiction, we assume that for every x ∈ M there exists some rx > 0
such that ∫

Brx (x)

Q+
gk dµgk 6 8π2 − δx, (4.13)

for some δx > 0 and for k large enough. Since the proof presented here is rather long, we

split it into several steps for clarity.

Step 1. In this step, from the contradiction assumption (4.13), we shall establish the key

estimate (4.22) below. Since M is compact, we can cover M by N balls Bi = Brxi/2(x
i)

with 1 6 i 6 N . By the property (P2) of Green’s function, we conclude that G(x, y) > 0
for any x ∈ M , y ∈ Brx(x) with rx suitably small. So, in the following, we choose the

radius rxi small enough such that G(x, y) > 0 for any x, y ∈ B̃i = Br
xi
(xi). Let

µk =

∫

M

Q+
k e

4wk dµg0 .

Then the fact that
∫
M

Qgke
4wk dµg0 = 0 implies that

∫
M

Q−
k e

4wk dµg0 = −µk. More-

over, by (4.10) we have

0 6 µk 6 128π2 + o(1).

Now we let w
(±)
k solve the equations

Pg0w
(±)
k = Q±

gke
4wk ∓ µk (4.14)
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on M . Since kerPg0 = {constants} and Pg0wk = Qgke
4wk , we can decompose wk as the

following

wk = w
(+)
k + w

(−)
k + dk, (4.15)

where dk is some constant. Integrating (4.15) with respect to the metric g0 yields

dk = wk − w
(+)
k − w

(−)
k . (4.16)

Recall that M is covered by all balls Bi with 1 6 i 6 N . Hence, for each x ∈ M we can

find some 1 6 i 6 N such that x ∈ Bi. By applying the formula (3.3) to the equations

(4.14) we obtain

w
(±)
k (x) =w

(±)
k +

∫

M

G(x, y)
(
Q±

gke
4wk ∓ µk

)
(y) dµg0(y)

=w
(±)
k +

∫

B̃i

G(x, y)Q±
gk

dµgk
(y)∓ µk

∫

M

G(x, y) dµg0(y)

+

∫

M\B̃i

G(x, y)Q±
gk dµgk(y).

(4.17)

It follows from the property (P1) of Green’s function and (4.10) that there exists positive

constants Ci independent of k such that
∣∣∣µk

∫

M

G(x, y) dµg0(y)
∣∣∣+

∣∣∣
∫

M\B̃i

G(x, y)Q±
gk dµgk(y)

∣∣∣ 6 Ci. (4.18)

If we set

c∗ = max
{
Ci : 1 6 i 6 N

}
,

then the positivity of G on each B̃i and (4.17) imply that for any x ∈ M , we have




w
(+)
k (x) > w

(+)
k − c∗,

w
(−)
k (x) 6 w

(−)
k + c∗.

(4.19)

Now, we define 



vk = wk − wk,

v
(+)
k = w

(+)
k − w

(+)
k + c∗,

v
(−)
k = w

(−)
k − w

(−)
k − c∗.

(4.20)

Then the relations in (4.19) imply that

v
(+)
k > 0 > v

(−)
k .

Furthermore, it follows from (4.15) and (4.16) that

wk − wk = w
(+)
k + w

(−)
k − w

(+)
k − w

(−)
k ,

which then yields

vk = v
(+)
k + v

(−)
k .

In view of (4.13), we may choose some real number s0 > 4 so that

s0

∫

B̃i

Q+
gk

dµgk
< 32π2 (4.21)

for any 1 6 i 6 N . By using (4.17) and (4.18), we can bound

v
(+)
k − c∗ =w

(+)
k − w

(+)
k 6 c∗ +

∫

B̃i

G(x, y)Q+
gk dµgk(y),

which then gives

exp
[
s0v

(+)
k

]
6 e2s0c∗ exp

[
s0

∫

B̃i

G(x, y)Q+
gk dµgk(y)

]
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6 e2s0c∗ exp
[
s0

∫

M

‖Q+
gkχB̃i

‖L1(M,gk)|G(x, y)|
Q+

gkχB̃i
(y)

‖Q+
gkχB̃i

‖L1(M,gk)

dµgk(y)
]

6 e2s0c∗
∫

M

exp
[
s0‖Q+

gk
χB̃i

‖L1(M,gk)|G(x, y)|
] Q+

gkχB̃i
(y)

‖Q+
gkχB̃i

‖L1(M,gk)

dµgk
(y),

thanks to the ‘weighted’ Jensen inequality; see [BM91, page 1227]. By integrating the

inequality above and using Fubini’s theorem, we obtain
∫

Bi

es0v
(+)
k dµg0(x) 6 e2s0c∗

∫

M

( ∫

Bi

exp
[
s0‖Q+

gk
χB̃i

‖L1(M,gk)|G(x, y)|
]
dµg0(x)

)

×
Q+

gkχB̃i
(y)

‖Q+
gkχB̃i

‖L1(M,gk)

dµgk
(y)

6 e2s0c∗ sup
y∈M

∫

M

exp
[
s0‖Q+

gk
χB̃i

‖L1(M,gk)|G(x, y)|
]
dµg0(x).

By the property (P2), we know that |G(x, y)| 6 (1/(8π2)) log(1/d(x, y)) + CG for any

x 6= y, which implies that

s0‖Q+
gk
χB̃i

‖L1(M,gk)|G(x, y)| 6 s0
8π2

‖Q+
gk
χB̃i

‖L1(M,gk) log
1

d(x, y)
+ 8π2

CGs0

for any x 6= y. From this we can estimate
∫

M

exp
[
s0‖Q+

gkχB̃i
‖L1(M,gk)|G(x, y)|

]
dµg0(x)

6 e8π
2
CGs0

∫

M

(
d(x, y)

)−(s0/8π
2)‖Q+

gk
χB̃i

‖L1(M,gk) dµg0(x).

The last integral in the preceding inequality is uniformly bounded because

(s0/8π
2)‖Q+

gk
χB̃i

‖L1(M,gk) < 4,

thanks to (4.21). So we have shown that
∫

Bi

es0v
(+)
k dµgk < +∞

for 1 6 i 6 N . Since M is covered by finitely many Bi’s, we conclude that
∫

M

es0v
(+)
k dµgk < +∞. (4.22)

This completes the first step.

Step 2. In this step, we claim from the key estimate (4.22) that v
(+)
k , defined in (4.20), is

uniformly bounded. To see this, we let p = 2s0/(s0+4). Then it follows from s0 > 4 that

1 < p < 2, 4p < s0. (4.23)

With this real number p, Minkowski’s inequality, and (4.14), we can estimate
∥∥Pg0v

(+)
k

∥∥
Lp(M,g0)

=
∥∥Pg0w

(+)
k

∥∥
Lp(M,g0)

=
∥∥Q+

gke
4wk ∓ µk

∥∥
Lp(M,g0)

6 αkλk

∥∥e4wk
∥∥
Lp(M,g0)

+
∥∥hke

4wk
∥∥
Lp(M,g0)

+ µk

= I + II + 128π2 + o(1)kր+∞.

Estimate of I: By Jensen’s inequality and the fact wk ∈ X∗
fλk

, we know that

wk =

∫

M

wk dµg0 6
1

4
log

( ∫

M

e4wk dµg0

)
= 0.
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Hence, wk = vk + wk 6 vk 6 v
(+)
k . This together with the fact that αkλk 6 64π2 +

o(1)kր+∞, (4.22) , (4.23), and Hölder’s inequality implies that

I 6 65π2
∥∥e4v

(+)
k

∥∥
Lp(M,g0)

6 65π2
∥∥es0v

(+)
k

∥∥4/s0
L1(M,g0)

.

Thus I = O(1)kր+∞.

Estimate of II: To estimate this term, we make use of Hölder’s inequality and the facts

that 1 < p < 2 and s0 = 4p/(2− p) to get

II = ‖hke
4wk‖Lp(M,g0) =

(∫

M

|hk|pe2pwke2pwk dµg0

)1/p

6 ‖hk‖L2(M,gk)

(∫

M

es0wk dµg0

)1/p−1/2

.

By (4.22) and (4.7), we deduce that

II = o(1)kր+∞.

Combining the estimates of I and II gives
∫

M

|Pg0v
(+)
k |p dµg0 < +∞.

In addition, it follows from (4.22) that

v
(+)
k ∈ Lq(M, g0)

for any q > 1. Thus, by standard elliptic theory, we have shown that v
(+)
k is bounded in

W 4,p(M, g0) for some p > 1. Again by Sobolev’s embedding, we conclude that v
(+)
k is

bounded in C0,α(M, g0) for some α ∈ [0, 4− 4/p]. The claim is proved.

Step 3. In this step, we show that the sequence (αk) is unbounded. Indeed, suppose that

(αk) is bounded, namely, αk = O(1)k→+∞. Mimicking the argument used in (4.10) to

get

0 6

∫

M

Q+
gk
e4wk dµg0 6 αkλk + ‖hk‖L2(M,gk) = o(1)kր+∞,

which tells us that (4.13) holds at any point in M . From this, we repeat the arguments in

Steps 1 and 2 to realize that (v
(+)
k ) is uniformly bounded. It is now possible to bound wk

uniformly from above as follows

wk = vk + wk 6 vk 6 v
(+)
k 6 C.

In view of the estimate ses > −1 for s 6 0 we find that

αkfλk
e4wkwk 6 C and |e2wkwk| 6 C.

uniformly in M . But then by multiplying (4.5) with wk we obtain the bound

βλk
6 2〈Pg0wk, wk〉

6 2

∫

M

αkfλk
e4wkwk dµg0 +2

∫

M

hke
4wkwk dµg0

6 C + 2‖hk‖L2(M,gk)‖e2wkwk‖L2(M,g0) 6 C,

provided k is large enough, which contradicts Lemma 4.1. Thus, (αk) is unbounded as

claimed.

Step 4. Now, we are in position to obtain a contradiction and show that there are finitely

many points x
(i)
∞ ∈ M with 1 6 i 6 I such that (4.12) holds. Keep in mind that αk ր +∞

as k → +∞. Depending on the size of wk, there are two possible cases as follows.
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Case 1. Suppose that wk → −∞ as k → +∞. By the uniform boundedness of v
(+)
k

established before, we have

wk = vk + wk 6 v
(+)
k + wk 6 C + wk.

Consequently, wk → −∞ uniformly on M as k → +∞. This contradicts the fact that∫
M e4wk dµg0 = 1.

Case 2. Suppose that wk > −C for some positive constant C. In view of (4.10), we choose

γ = 1/17 so that

γ

∫

M

|Qgk | dµgk < 8π2

holds for large k. This estimate plays a similar role as that of (4.13). Therefore, we can

repeat the previous argument to get that

∥∥e−s1γv
(−)
k

∥∥
L1(M,g0)

< +∞ (4.24)

for some s1 > 4. This together with (4.5) and vol(M, g0) = 1 implies that
∫

M

(
αk|fλk

|
)2−1

e2vk−2γv
(−)
k dµg0

6

(∫

M

αk|fλk
|e4vk dµg0

)1/2(∫

M

e−4γv
(−)
k dµg0

)1/2

= e−2wk

( ∫

M

αk|fλk
|e4wk dµg0

)1/2( ∫

M

e−4γv
(−)
k dµg0

)1/2

6 e−2wk

( ∫

M

(
|Qgk |+ |hk|

)
e4wk dµg0

)1/2(∫

M

e−4γv
(−)
k dµg0

)1/2

6 e−2wk

( ∫

M

|Qgk | dµgk +
∥∥hk

∥∥
L2(M,gk)

)1/2( ∫

M

e−4γv
(−)
k dµg0

)1/2

.

This, the lower bound of wk, (4.7), (4.10), and (4.24) imply that
∫

M

(
αk|fλk

|
)2−1

e2vk−2γv
(−)
k dµg0 6 C (4.25)

for some constant C > 0. For any integer m > 1, thanks to (4.24) and (4.25), we do

iteration to get that
∫

M

(
αk|fλk

|
)2−m

e2
2−mvk−2γv

(−)
k dµg0

6

(∫

M

(
αk|fλk

|
)21−m

e2
3−mvk−2γv

(−)
k dµg0

)2−1(∫

M

e−4γv
(−)
k dµg0

)2−1

6 · · · 6 C
( ∫

M

(
αk|fλk

|
)2−1

e2vk−2γv
(−)
k dµg0

)21−m

6 C

(4.26)

for some new constant C > 0. By choosing m > 1 large enough such that 21−m < γ and

fixing it, we have

22−mvk − 2γv
(−)
k = 2

[
21−mv

(+)
k + (21−m − γ)v

(−)
k

]
> 22−mv

(+)
k > 0.

This implies that

lim inf
k→+∞

∫

M

|fλk
|2−m

e2
2−mvk−2γv

(−)
k dµg0 >

∫

M

|f0|2
−m

dµg0 > 0.

Substituting this estimate into (4.26) gives

lim inf
k→+∞

α2−m

k 6 C
( ∫

M

|f0|2
−m

dµg0

)−1

< +∞,
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which contradicts the fact that αk → +∞ as k → +∞ established in Step 3. This

contradiction implies that there exists at least one point x ∈ M such that (4.12) holds.

Moreover, the bound of total Q-curvature (4.10) shows that there can only have finitely

many points in M such that (4.12) holds. Let us denote by I the number of such points and

for clarity these points will be denoted by x
(i)
∞ with 1 6 i 6 I . This completes PART 1.

PART 2. Proof of f0(x
i
∞) = 0 for 1 6 i 6 I and I 6 8.

Suppose that, for some i ∈ {1, 2, ..., I}, we have f0(x
(i)
∞ ) < 0. Then, on one hand, for

sufficiently small ε > 0, we may find some r > 0 such that

fλk
6 −ε/2

on Br(x
i
∞) for k sufficiently large. On the other hand, again we make use of the estimate

Q+
gk 6 (αkfλk

)+ + |hk| 6 |hk| to get
∫

Br(xi
∞)

Q+
gk dµgk 6

∫

Br(xi
∞)

(
αkfλk

)+
dµgk +

∫

M

|hk| dµgk 6 ‖hk‖2L2(M,gk)
,

thanks to Hölder’s inequality and vol(M, gk) = 1. Thus
∫
Br(xi

∞) Q
+
gk dµgk → 0 as k →

+∞, which contradicts (4.12). Thus, (4.11) holds. Finally, the estimate I 6 8 follows

from the inequality

lim sup
k→+∞

∫

M

Q+
gk
e4wk dµg0 6 64π2

in (4.10) and the inequality (4.12). �

An immediate consequence of Lemma 4.6 is the following

8π2 − o(1)kր+∞ 6 αkλk 6 64π2 + o(1)kր+∞. (4.27)

4.3. Blow-up analysis. In this subsection, we derive the blow-up behavior for the func-

tions wk in (4.5), namely

Pg0wk = Qgke
4wk =

(
αkfλk

+ hk

)
e4wk

under the following two hypotheses

lim sup
k→+∞

(λkαk) 6 64π2

and

‖hk‖L2(M,gk) = o(1)kր+∞.

We also characterize the shape of the associated conformal metrics gk = e2wkg0 as k →
+∞.

First we consider the non-degenerate case.

4.3.1. Non-degenerate case.

Theorem 4.7. Assume that the Paneitz operator Pg0 is positive with kernel consisting of

constant functions. Let f0 6 0 be a smooth, non-constant function with maxM f0 = 0
having only non-degenerate maximum points. Then for wk as in (4.5) above and suitable

I ∈ N, r
(i)
k ց 0, x

(i)
k → x

(i)
∞ ∈ M with f0(x

(i)
∞ ) = 0, 1 6 i 6 I , as k → +∞ the

following hold:

(i) wk → −∞ locally uniformly on M∞ = M\{x(i)
∞ ; 1 6 i 6 I}.

(ii) In normal coordinates around x
(i)
∞ , set z

(i)
k = exp−1

x
(i)
∞
(x

(i)
k ) and w̃k = wk◦expx(i)

∞
.

Then for each 1 6 i 6 I , either
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(a) lim supk→+∞ r
(i)
k /

√
λk = 0 and

ŵk(z) := w̃
(
z
(i)
k + r

(i)
k z

)
+ log r

(i)
k → ŵ∞(z)

strongly in H4
loc(R

4), where ŵ∞, up to a translation and a scaling, is given

by

ŵ∞(z) = log
( 4

√
6

4
√
6 + |z|2

)

and it induces a spherical metric

ĝ∞ = e4ŵ∞gR4

of Q-curvature

Qĝ∞ ≡ 1

on R
4 and 1 6 I 6 4, or

(b) lim supk→+∞ r
(i)
k /

√
λk > 0 and

ŵk(z) := w̃
(
z
(i)
k + r

(i)
k z

)
+ log(r

(i)
k ) → ŵ∞(z)

strongly in H4
loc(R

4), where ŵ∞, up to a translation and a scaling, solves

∆2
zŵ∞(z) =

(
1 +

1

2
Hessf0(x

(i)
∞ )

[
z, z

])
e4ŵ∞ .

In addition, the metric

ĝ∞ = e4ŵ∞gR4

on R
4 has finite volume and finite total Q-curvature

Qĝ∞(z) = 1 +
1

2
Hessf0(x

(i)
∞ )

[
z, z

]

and 1 6 I 6 8.

Proof. Our proof consists of two parts.

PART 1. We establish Part (i) of the theorem. Recall that

M∞ = M\{x(i)
∞ : 1 6 i 6 I}

and let x ∈ M∞ be arbitrary. Then it follows from Lemma 4.6 that there exists a radius

rx > 0 perhaps depending on x such that for large k we have
∫

Brx (x)

Q+
gk dµgk < 8π2.

Following the same notations defined in (4.20), we split

vk = v
(+)
k + v

(−)
k .

Also, we let γ = 1/17. Since the preceding estimate serves the same role as that of (4.13)

in the proof of Lemma 4.6, by repeating a similar argument used in the proof of Lemma

4.6 to get (4.22), we find that
∥∥ev

(+)
k

∥∥
Lsx(Brx (x))

+
∥∥e−γv

(−)
k

∥∥
Lsx(Brx (x))

6 C

for some sx > 4, which could also depend on x.

Now, given any open subset Ω ⊂ Ω ⊂ M∞, our aim in this part is to show that wk →
−∞ uniformly in Ω. To this purpose, we first cover Ω by finitely many balls Brj/2(xj),
1 6 j 6 N0, in such a way that for each ball Bj := Brj(xj) with 1 6 j 6 N0 we still

have ∫

Bj

Q+
gk dµgk < 8π2.
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Set s = min16j6N0 sxj . Then it follows from the uniform boundedness of (v
(+)
k ) in M

that ∥∥ev
(+)
k

∥∥
Ls(Ω)

6
∑

16j6N0

∥∥ev
(+)
k

∥∥
Ls(Bj)

6 C.

We may assume that Ω is connected and large enough so that
∫
Ω f0 dµg0 < 0. If there

holds wk > −C > −∞, then we may argue as in Case 2 of Step 4 in PART 1 of the proof

of Lemma 4.6 to obtain

lim inf
k→+∞

α2−m

k 6 C
( ∫

Ω

|f0|2
−m

dµg0

)−1

< +∞,

which contradicts the fact that αk → +∞ as k → +∞. Hence, we must have

wk → −∞
as k → +∞. Then it follows from the uniform boundedness of (v

(+)
k ) that

wk = vk + wk 6 v
(+)
k + wk → −∞

as k → +∞. This finishes the proof of Part (i).

PART 2. Starting from now to the rest of the proof, we establish Part (ii) of the theorem,

namely, the blow-up behavior near each point x
(i)
∞ with 1 6 i 6 I . Since the proof of

this part is rather long, we also divide it into several claims. Before doing so, we devote

ourselves to preliminaries necessary for the blow-up analysis below. For simplicity, we

denote x0 = x
(i)
∞ . Let ig be the injectivity radius of M . Clearly ig > 0 since M is compact

and the restriction of expx0
to {X ∈ Tx0M : ‖X‖g0 < ig} induces a diffeomorphism

onto Big (x0). Assimilating (Tx0M, g0(x0)) to (Rn, dz 2) isometrically, one can then con-

sider expx0
as a local chart around the point x0. This allows us to select δ0 ∈ (0, ig/2)

sufficiently small such that for all x ∈ M and all y, z ∈ R
4, if |y| 6 δ0 and |z| 6 δ0, then

|y − z|
2

6 dg(expx(y), expx(z)) 6 2|y − z|; (4.28)

see [DER04, page 43]. Let δ < min{1, δ0} and denote by B̂δ(0) the open ball {x ∈ R
4 :

|x| < δ} in R
4. As always, we often use either a hat or a tilde to denote quantities in R

4.

We now consider the exponential map

expx0
: B̂δ(0) → M

with expx0
(0) = x0. We can also assume that δ > 0 is chosen sufficiently small in order to

guarantee that the only maxima of f0 in expx0
(B̂δ(0)) is x0. Since expx0

is an isometric

diffeomorphism onto Big (x0), we deduce that

expx0
(B̂r(0)) = Br(x0)) (4.29)

whenever r < δ0, while by (4.28) it is not hard to see that

expx0
(B̂r(z)) ⊂ B2r(expx0

(z)) (4.30)

whenever |z|+ r < δ0 and that

Br(expx0
(z)) ⊂ expx0

(B̂2r(z)) (4.31)

whenever |z|+ r < δ0. Combining (4.30) and (4.31) gives

B̂r/2(exp
−1
x0

(y)) ⊂ exp−1
x0

(Br(y)) ⊂ B̂2r(exp
−1
x0

(y)), (4.32)

which is often used throughout the paper. Given a function h on M we denote

h̃ = h ◦ expx0
;

we also consider the pull-back metric

g̃0 = exp∗x0
g0.
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Since x0 is a non-degenerate maxima of f0, up to an action of the orthogonal group, we

may assume that f̃0 has the following expansion

f̃0(z) = −
4∑

i=1

ai
(
zi
)2

+O(|z|3), (4.33)

for any z = (z1, ..., z4) ∈ B̂δ(0) with 0 < a1 6 a2 6 a3 6 a4. If we choose δ even

smaller, then we can further assume that

−3a4
2

|z|2 6 f̃0(z) 6 −a1
2
|z|2

for all z ∈ B̂δ(0). From now on let us consider large k in such a way that

λk/a1 < δ4/24.

We also set

Ak =
{
x ∈ M : αkfλk

(x) + hk > 0
}
∩Bδ(x0),

where hk is defined by (4.8). Clearly,

{
x ∈ M : αkfλk

(x) + hk > 0
}
=

{
x ∈ M : λk +

hk

αk
> −f0(x)

}
.

Combining (4.9) and (4.27) gives λk + |hk|/αk 6 (3/2)λk. From this, the estimate

−f̃0(z) > (a1/2)|z|2 in B̂δ(0), and (4.29) we conclude that

exp−1
x0

(Ak) ⊂ B̂√
3λk/a1

(0). (4.34)

Claim 1. There exists a constant ρ0 > 0 such that for each ρ ∈ (0, ρ0), there exists a

sequence of positive numbers (rk)k and a sequence of points (xk)k ⊂ Bδ(x0) satisfying




0 < rk 6
√
3λk/a1,∫

Brk
(xk)

e4wk dµg0 = ρ,

xk → x0 and wk(xk) → +∞, as k → ∞,
∫

Brk
(y)

e4wk dµg0 6 ρ, for all y ∈ B√
rk(xk).

(4.35a)

(4.35b)

(4.35c)

(4.35d)

Proof of Claim 1. It follows from Lemma 4.6 and Q+
gk

6 (αkfλk
+ hk)

+ + |hk − hk| that

8π2 − o(1)kր+∞ 6

∫

Bδ(x0)

(αkfλk
+ hk)

+e4wk dµg0 +

∫

Bδ(x0)

|hk − hk|e4wk dµg0 .

Making use of (4.9) we further obtain

8π2 − o(1)kր+∞ 6

∫

Bδ(x0)

(αkfλk
+ hk)

+e4wk dµg0 +o(1)kր+∞.

On the other hand, by (4.34), (4.9), and (4.27) we can estimate
∫

Bδ(x0)

(αkfλk
+ hk)

+e4wk dµg0 =

∫

Ak

(αkfλk
+ hk)e

4wk dµg0

=

∫

exp−1
x0

(Ak)

(αkf̃λk
+ hk)e

4w̃k dµg̃0

6

∫

exp−1
x0

(Ak)

(
αkλk + o(1)kր+∞

)
e4w̃k dµg̃0
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6
(
64π2 + o(1)kր+∞

) ∫

B√
3λk/a1

(x0)

e4wk dµg0 .

Putting all these estimates together, we eventually get

8π2 − o(1)kր+∞ 6
(
64π2 + o(1)kր+∞

) ∫

B√
3λk/a1

(x0)

e4wk dµg0 .

Hence, we have just shown that
∫

B√
3λk/a1

(x0)

e4wk dµg0 >
7

65
. (4.36)

Now, if we let

τ(s) = sup
x∈Bδ(x0)

∫

Bs(x)

e4wk dµg0 ,

then τ(0) = 0 and by (4.36) we know that

τ(
√

3λk/a1) >
7

65
.

By setting ρ0 = 7/65 and by the continuity of τ , we thus have for each ρ ∈ (0, ρ0), there

exists some rk ∈ (0,
√
3λk/a1) such that τ(rk) = ρ. Furthermore, the compactness of

Bδ(x0) allows us to choose xk ∈ Bδ(x0) such that
∫

Brk
(xk)

e4wk dµg0 = sup
x∈Bδ(x0)

∫

Brk
(x)

e4wk dµg0

for each k ∈ N. This finishes the proof of (4.35a) and (4.35b).

Next, let us show (4.35c). To see this, we assume by contradiction that wk(xk) 6 Cw

for some constant Cw > 0. On one hand, by the estimate (αkfλk
+ hk)

+ > (αkfλk
+

hk)
+ − |hk − hk|, Lemma 4.6, and (4.9), we get

lim inf
k→+∞

∫

Bδ(x0)

(
αkfλk

+ hk

)+
e4wk dµg0

> lim inf
k→+∞

(∫

Bδ(x0)

(αkfλk
+ hk)

+e4wk dµg0 −‖hk − hk‖L1(M,gk)

)

> 8π2.

On the other hand, we have, by (4.27) and (4.9), that

lim inf
k→+∞

∫

Bδ(x0)

(αkfλk
+ hk)

+e4wk dµg0 = lim inf
k→+∞

∫

Ak

(αkfλk
+ hk)e

4wk dµg0

6 lim inf
k→+∞

(
e4Cwαkλk

∫

Ak

dµg0

)

6 O(δ4).

We thus obtain a contradiction if we choose δ small at the beginning. Thus, we have

already established the unboundedness of wk(xk). To see why xk → x0 as k → +∞, we

assume by contradiction that xk → x∗ 6= x0. Clearly, x∗ ∈ M∞ because (xk) ⊂ Bδ(x0).
By the result in Part (i) we know that wk(x∗) → −∞ which contradicts the fact that

wk(xk) → +∞.

Finally, keep in mind that rk <
√
3λk/a1 < (δ/2)2. This together with the proved fact

(4.35c) above immediately implies that B√
rk(xk) ⊂ Bδ(x0). Hence from our choice of ρ

we have ∫

Brk
(y)

e4wk dµg0 6 ρ



BUBBLING OF THE PRESCRIBED Q-CURVATURE EQUATION 25

for all y ∈ B√
rk(xk). Thus (4.35d) is proved and we complete the proof of Claim 1. �

Set zk = exp−1
x0

(xk). With the choice of rk and zk above, we consider in R
4 the

translation–dilation

Γk : z 7→ zk + rkz.

Clearly, Γk(D̂k,δ) = B̂δ(0), where, given r > 0, the set D̂k,r is defined as follows

D̂k,r := {z ∈ R
4 : |zk + rkz| < r}.

Clearly we may rewrite D̂k,r as D̂k,r = B̂r/rk(−zk/rk). Recall that rk → 0 and zk → 0
as k → +∞ by Claim 1. This implies that zk/rk = o(r/rk)kր+∞. From this we deduce

that, for each r > 0 fixed, the set D̂k,r exhausts R4 as k → +∞. Next, we consider the

scaled metrics

ĝk = r−2
k Γ∗

kg̃0

on D̂k,r. Also, we define

ŵk = w̃k ◦ Γk + log rk. (4.37)

Making use of (4.32) gives

B̂R/2(0) ⊂ (expx0
◦Γk)

−1(BRrk(xk)) ⊂ B̂2R(0). (4.38)

In view of the conformally covariant property of P, there holds Pĝk = r4kPΓ∗
k
g̃0 . Then by

a direct computation, the function ŵk satisfies

Pĝk ŵk(z) = r4kPΓ∗
k g̃0

(
w̃k(Γk(z))

)

=
(
αkf̃λk

(Γk(z)) + h̃k ◦ Γk

)
e4[w̃k(Γk(z))+log rk]

= f̂k(z)e
4ŵk(z),

(4.39)

where

f̂k = αkf̃λk
◦ Γk + h̃k ◦ Γk.

Using the exponential map, we can rewrite the identity in (4.35b) as follows

ρ =

∫

(expx0
◦Γk)−1(Brk

(xk))

e4ŵk dµĝk . (4.40)

To rewrite the inequality in (4.35d), first we make use of (4.32) to get

B̂rk/2(exp
−1
x0

(y)) ⊂ exp−1
x0

(Brk(y)).

Since Γ−1
k : z 7→ (z − zk)/rk, we deduce that

B̂1/2

(exp−1
x0

(y)− zk

rk

)
⊂ (expx0

◦Γk)
−1(Brk(y)).

Therefore, the last inequality in (4.35) gives
∫

B̂1/2

(
exp

−1
x0

(y)−zk
rk

) e4ŵk dµĝk 6 ρ

for all y ∈ B√
rk(xk). By (4.38), notice that

(expx0
◦Γk)

(
B̂1/(2

√
rk)(0)

)
= expx0

(
B̂√

rk/2(zk)
)
⊂ B√

rk(xk).

Hence, substituting y = expx0
(Γk(z)) into the inequality above yields

∫

B̂1/2(z)

e4ŵk dµĝk
6 ρ (4.41)

for any z ∈ B̂1/(2
√
rk)(0). Since the set B̂1/(2

√
rk)(0) exhausts R4 as k → +∞, we can

freely use (4.41) for arbitrary z in any fixed ball provided k is suitably large. In the next

step, we provide a more precise estimate on d(xk, x0) in terms of λk.
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Claim 2. There exists some constant C > 0 such that

d(xk, x0) 6 C
√
λk (4.42)

for all k large.

Proof of Claim 2. If this were not true, then we would have d(xk, x0)/
√
λk → +∞ as

k → +∞. From the expansion of f̃0 in (4.33), the bound for αkλk in (4.27), and the

inequality r2k/λk 6 3/a1 we obtain for any fixed R > 2 with |z| 6 R

αk|f̃0(Γk(z))| >
(
αkλk

)
λ−1
k

(a1
2

∣∣zk + rkz
∣∣2
)

>
(
αkλk

)
λ−1
k

a1
2

(1
2
|zk|2 − r2k|z|2

)

> 7π2
(a1
4

|zk|2
λk

− 3

2
R2

)
.

This together with the fact that |zk|/
√
λk → +∞ as k → +∞ implies that

αk|f̃0(Γk(z))| → +∞
uniformly in the ball B̂R(0). Thus for K = 65π2/ρ there holds αk|f̃0(Γk(z))| > K for

all z ∈ B̂R(0) provided k is large enough. Note that |f0| = λk − fλk
. From this we may

write

αk|f̃0(Γk(z))| = αkλk − αkf̃λk
(Γk(z)).

Then by (4.35b), R > 2, (4.38), and (4.9), for k large enough, we have the estimate

65π2 6 K

∫

BRrk/2(xk)

e4wk dµg0

= K

∫

(expx0
◦Γk)−1(BRrk/2(xk))

e4ŵk dµĝk

6

∫

B̂R(0)

αk|f̃0(Γk(z))|e4ŵk dµĝk

=

∫

B̂R(0)

(
αkλk − αkf̃λk

(Γk(z))
)
e4ŵk dµĝk

6

∫

(expx0
◦Γk)−1(B2Rrk

(xk))

(
αkλk − αkf̃λk

(Γk(z))
)
e4ŵk dµĝk

=

∫

B2Rrk
(xk)

(
αkλk − αkfλk

)
e4wk dµg0

6

∫

M

(
αkλk − (αkfλk

+ hk)
)
e4wk dµg0 +o(1)

6 αkλk + o(1)

6 64π2 + o(1),

which is impossible for k sufficiently large. This proves (4.42). �

Using the expansion of f̃0 in (4.33) we may write αkf̃λk
◦ Γk as

αkf̃λk

(
Γk(z)

)
= αkλk + αkf̃0(Γk(z))

= αkλk

[
λ−1
k f̃0(Γk(z)) + 1

]

= αkλk




−
4∑

i=1

ai

( zik√
λk

+
rk√
λk

zi
)2

+O
(√

λk

∣∣∣ zk√
λk

+
rk√
λk

z
∣∣∣
3)

+ 1


 .

(4.43)
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It follows from (4.35) and (4.42) that

rk√
λk

6
√
3/a1 and

|zk|√
λk

6 C.

Plugging these into (4.43) and using (4.27) we can find a positive constant CR such that

αk

∣∣f̃λk
(Γk(z))

∣∣ 6 CR (4.44)

for any z ∈ B̂R(0).

Claim 3. Let ŵk be given in (4.37). Then ŵk is bounded in W 4,s0
loc (R4) for some s0 > 1.

Thus, there exists a function ŵ∞ such that ŵk → ŵ∞ strongly in C0,α
loc (R

4) ∩ H2
loc(R

4)
for any 0 < α < 1− 1/s0. Moreover, there holds

∫

R4

e4ŵ∞ dz 6 1. (4.45)

Proof of Claim 3: We borrow the method used in the proof of [Mal06, Proposition 3.4].

Let R > 8 be arbitrary but fixed. Then we define a smooth cut-off function ηR with

ηR(z) =

{
1 if z ∈ B̂R/2(0),

0 if z ∈ R
4 \ B̂2R(0).

Set 



ak =
1

|B̂R(0)|

∫

B̂R(0)

ŵk dµĝk ,

Φk = ηRŵk + (1− ηR)ak, and

Φ̂k = Φk − ak.

Then

Φk =

{
ŵk on B̂R/2(0),

ak on R
4 \ B̂2R(0).

In particular, Φ̂k = 0 in R
4 \ B̂2R(0). Hence, Φ̂k has a uniform compact support. Observe

that Φ̂k = ηR
(
ŵk−ak). From this and the equation satisfied by ŵk in (4.39), it is not hard

to see that Φ̂k satisfies the following equation

Pĝk Φ̂k = ηRPĝk ŵk + Lk

(
ŵk − ak

)
= ϕk, (4.46)

where

ϕk = ηRf̂ke
4ŵk + Lk

(
ŵk − ak

)
.

Note that in (4.46), (Lk)k are linear operators containing derivatives of order 0, 1, 2 and

3 with uniformly bounded and smooth coefficients. Therefore, by Lemma 3.1 and some

scaling argument one can easily find that
∫

B̂2R(0)

(
|∇3ŵk|s + |∇2ŵk|s + |∇ŵk|s

)
dµĝk 6 CR (4.47)

for any k ∈ N and any s ∈ [1, 4/3). Since Φ̂k has compact support and Φ̂k = ŵk − ak in

B̂R/2(0), we can apply Ls-Poincaré’s inequality to get
∫

B̂R/2(0)

|Φ̂k|s dµĝk 6 CR (4.48)

for any k ∈ N and any s ∈ [1, 4/3). It follows from (4.47) and (4.48) that
∫

B̂R/2(0)

∣∣Lk

(
ŵk − ak

)∣∣s dµĝk 6 CR (4.49)
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for any k ∈ N and any s ∈ [1, 4/3). We now use (4.49) together with Hölder’s inequality

to conclude, for any z ∈ B̂R/4(0) and r > 0 sufficiently small, that
∫

B̂r(z)

∣∣Lk

(
ŵk − ak

)∣∣dµĝk
6 O(r). (4.50)

On the other hand, it follows from the boundedness of ‖hk‖L2(M,gk) in (4.7), the bound-

edness of αkf̃λk
◦ Γk in (4.44), and the estimate of

∫
e4ŵk dµĝk

in (4.41) that
∫

B̂r(z)

∣∣f̂ke4ŵk
∣∣dµĝk 6

∫

B̂r(z)

αk

∣∣f̃λk
◦ Γk

∣∣e4ŵk dµĝk +

∫

B̂r(z)

∣∣h̃k ◦ Γk

∣∣e4ŵk dµĝk

6 CR

∫

B̂r(z)

e4ŵk dµĝk
+
∥∥hk

∥∥
L2(M,gk)

6 CRρ+ εk 6 2CRρ
(4.51)

for any z ∈ B̂R/4(0), r > 0 small, and k large. Hence, by choosing r > 0 and ρ > 0
suitably small, we obtain from (4.50) and (4.51) the following estimate

∫

B̂r(z)

|ϕk| dµĝk < 8π2

for all z ∈ B̂R/4(0). Then, it follows from the equation solved by Φ̂k in (4.46), Remark

3.3 and a finite covering argument that there exists some s1 > 1 such that
∫

B̂R/4(0)

e4s1Φ̂k dµĝk
6 C, (4.52)

where C > 0 is a fixed constant.

Next, we show that ak is bounded. To see this, it follows from Jensen’s inequality,

(4.30) and the fact that
∫
M e4wk dµg0 = 1 that

ak =
1

|B̂R(0)|

∫

B̂R(0)

ŵk dµĝk

6
1

4
log

( 1

|B̂R(0)|

∫

B̂R(0)

e4ŵk dµĝk

)

6
1

4
log

( 1

|B̂R(0)|

∫

B2Rrk
(xk)

e4wk dµg0

)
6 CR.

To bound ak from below, we recall from (4.40) the following
∫

(expx0
◦Γk)−1(Brk

(xk))

e4ŵk dµĝk = ρ.

Making use of (4.38) gives

(expx0
◦Γk)

−1(Brk(xk)) ⊂ B̂2(0).

Consequently, for k large and because R/4 > 2, we arrive at
∫

B̂R/4(0)

e4ŵk dµĝk > ρ.

This together with the fact that Φk = ŵk in B̂R/4(0), we obtain

ρ 6

∫

B̂R/4(0)

e4Φk dµĝk = e4ak

∫

B̂R/4(0)

e4Φ̂k dµĝk ,

which implies by (4.52) that ak > −CR and hence we find

|ak| 6 CR.
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Using this fact, we have by (4.48) and Minkowski’s inequality that∫

B̂R/2(0)

∣∣ŵk

∣∣s dµĝk
6 CR (4.53)

for all s ∈ [1, 4/3) and by (4.52) that
∫

B̂R/4(0)

e4s1ŵk dµĝk 6 CR. (4.54)

Now, we take 1 < s2 < min{s1, 2} and let s0 = 2s2/(1 + s2). Then 1 < s0 <

min{4/3, s1} and s2 = s0/(2 − s0). Using the boundedness of αkf̃λk
◦ Γk in (4.44),

Hölder’s inequality, the estimate of ‖hk‖L2(M,gk) in (4.7), and (4.54) we can bound
∫

B̂R/4(0)

∣∣f̂ke4ŵk
∣∣s0 dµĝk

6C

∫

B̂R/4(0)

∣∣αkf̃λk
◦ Γk

∣∣s0e4s0ŵk dµĝk

+ C

∫

B̂R/4(0)

|h̃k ◦ Γk|s0e2s0ŵke2s0ŵk dµĝk

6CR

(∫

B̂R/4(0)

e4s1ŵk dµĝk

)s0/s1

+ C

(∫

B̂R/4(0)

|h̃k ◦ Γk|2e4ŵk dµĝk

)s0/2

×
(∫

B̂R/4(0)

e4s2ŵk dµĝk

)s0/(2s2)

6CR + CR‖hk‖L2(M,gk)

(∫

B̂R/4(0)

e4s1ŵk dµĝk

)s0s1/(2s
2
2)

6CR.
(4.55)

Plugging (4.55) into (4.39) gives∫

B̂R/4(0)

|Pĝk ŵk|s0 dµĝk
6 CR,

which together with (4.53) implies that ŵk is bounded inW 4,s0
loc (R4). In particular, Sobolev

embedding theorem implies that ŵk → ŵ∞ strongly in C0,α
loc (R

4) ∩ H2
loc(R

4) with 0 <
α < 1− 1/s0. It remains to establish (4.45). Indeed, by Fatou’s lemma, (4.38) and the fact

that
∫
M e4w dµg0 = 1 we obtain

∫

B̂R(0)

e4ŵ∞ dz 6 lim inf
k→+∞

∫

B̂R(0)

e4ŵk dµĝk

6 lim inf
k→+∞

∫

B2Rrk
(xk)

e4wk dµg0 6 1.

Passing to the limit R → +∞ we find
∫

R4

e4ŵ∞ dz 6 1.

We thus finish the proof of Claim 3. �

Claim 4. The assertions in Theorem 4.7(ii) hold true.

Proof of Claim 4. Since 0 < rk/
√
λk 6

√
3/a1 by (4.35), we have two possibilities.

Case 1. There holds lim supk→+∞ rk/
√
λk = 0. In this scenario, recall that the estimate

d(xk, x0) = O(
√
λk)kր+∞ in (4.42) implies that |zk| = O(

√
λk)kր+∞ if k is large
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enough. This together with (4.27) and (4.43) implies that there exists some r0 6 64π2

such that, up to a subsequence,

lim
k→+∞

αkf̃λk

(
Γk(z)

)
= r0 (4.56)

uniformly in any fixed ball B̂R(0). Next we derive the equation for the limit function ŵ∞
in Claim 3. We multiply by a smooth function ϕ with compact support on the both sides

of equation (4.39) and then do integrating by parts to obtain

〈Pĝk ŵk, ϕ〉 =
∫

R4

αkf̃λk
◦ Γke

4ŵkϕ dµĝk
+

∫

R4

h̃k ◦ Γke
4ŵkϕ dµĝk

.

By the fact that ĝk → (dz)2 in C∞
loc(R

4) and the estimate of ‖hk‖L2(M,gk) in (4.7) we send

k to infinity in the equality above to conclude that the function ŵ∞ solves the equation

∆2
zŵ∞ = r0e

4ŵ∞ (4.57)

in R
4.

Since in this case we can obtain a very precise form for w∞ from (4.57), we need more

work by showing that r0 > 0. Indeed, suppose that this is not true, then we are led to two

cases: r0 = 0 or r0 < 0. When r0 = 0, it follows from (4.57) and (4.45) that the function

ŵ∞ solves

∆2
zŵ∞ = 0

with the finite energy condition
∫

R4

e4ŵ∞ dz < +∞.

Now it follows from [Mar09, Theorem 3] that ŵ∞ is a polynomial of order exactly two,

which is also bounded in R
4. Consequently, ŵ∞ is at most linear. Therefore, we can make

use of [ARS06, Theorem 2.4] to conclude that

∆zŵ∞ ≡ c0 > 0

everywhere in R
4. Using this fact, on one hand, the strong convergence∆ĝk ŵk → ∆zŵ∞

in L2
loc(R

4) implies, for arbitrary but fixed R > 0, that

lim
k→+∞

∫

B̂R/2(0)

|∆ĝk ŵk| dµĝk
=

∫

B̂R/2(0)

|∆zŵ∞| dz =
c0
4
π2

(R
2

)4

.

However, on the other hand, we can estimate
∫

B̂R/2(0)

|∆ĝk ŵk| dµĝk

= r−2
k

∫

B̂Rrk
(zk)

|∆g̃0w̃k| dµg̃0

6 r−2
k

∫

B2Rrk
(xk)

|∆g0wk| dµg0

= r−2
k

∫

B2Rrk
(xk)

∫

M

∣∣∆g0G(x, y)
∣∣∣∣αkfλk

(y) + hk

∣∣e4wk(y) dµg0(y) dµg0(x)

6 Cr−2
k

∫

M

∣∣αkfλk
(y) + hk

∣∣e4wk(y)

∫

B2Rrk
(xk)

d(x, y)−2 dµg0(x) dµg0(y)

6 CR2

∫

M

∣∣αkfλk
+ hk

∣∣e4wk dµg0

= O(R2).
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Putting these facts together, we eventually obtain

c0
4
π2

(R
2

)4

= O(R2), (4.58)

which is impossible if we let R sufficiently large. We now rule out the case r0 < 0. Indeed,

in this scenario, we apply [Mar08, Theorem 2] to (4.57) to get

lim
t→+∞

∆ŵ∞(tξ) = c1 6= 0

uniformly in ξ ∈ K where K ⊂ S3 is any compact set with positive Hausdorff measure.

Then, for k large enough, we have the following estimates similar to the ones leading to

(4.58)

C
(R
2

)4

6

∫

B̂R/2(0)∩(R+K)

|∆zŵ∞| dz

6 lim
k→+∞

∫

B̂R/2(0)

|∆ĝk ŵk| dµĝk

= O(R2),

which, again, is a contradiction if R is sufficiently large. Hence, we have proved that

r0 > 0. Since e4ŵ∞ ∈ L1(R4) by (4.45), the well-known classification theorem in [Lin98]

then implies that either there exists a constant c0 > 0 such that

−∆zŵ∞ > c0

everywhere in R
4 or there exist some µ0 > 0 and z0 ∈ R

4 such that

ŵ∞(z) = log
( 2µ0

1 + µ2
0|z − z0|2

)
− 1

4
log

r0
6
. (4.59)

We can rule out the first alternative in the same way as (4.58). Hence, the second alternative

must occur. Now, recall by Claim 3 that we have the strong convergence ŵk ⇀ ŵ∞ in

C0,α
loc (R

4) ∩H2
loc(R

4) for some 0 < α < 1. This together with the decomposition

Pĝk(ŵk − ŵ∞) + (Pĝk −∆2
z)ŵ∞ =h̃k ◦ Γke

4ŵk +
(
αkf̃λk

◦ Γk − r0
)
e4ŵk

+ r0(e
4ŵk − e4ŵ∞),

(4.7) and (4.56) implies that ŵk → ŵ∞ strongly in H4
loc(R

4).

Up to this point, we are ready to estimate the number of blow-up points. Recall that we

have already had I 6 8, however, in the present case, we aim to show that indeed I 6 4.

Clearly at each blow-up point, say x0 as before with the same notations used up to this

position for simplicity, from the explicit formula (4.59) we can compute
∫

R4

e4ŵ∞ dz =
6

r0

∫

R4

(
2µ0

1 + µ2
0|z − z0|2

)4

dz =
16π2

r0
.

Since eŵk → e4ŵ∞ strongly in L1
loc(R

4) as k → +∞ and r0 6 64π2, we have for R and

k sufficiently large

15

64
6

∫

B̂R(0)

e4ŵk dµĝk 6

∫

B2Rrk
(xk)

e4wk dµg0 .

Since the number of blow-up points is finite, if we choose k even larger, we deduce that the

sets B2Rrk(xk) ⊂ Bδ(x0) and they are non-overlap at different blow-up points. Keep in

my that
∫
M e4wk dµg0 = 1. From this we deduce that the number of blow-up points must

less than or equal to 4, namely I 6 4.

Finally, we notice that, up to a translation and a scaling, ŵ∞ has the form

ŵ∞(z) = log
( 4

√
6

4
√
6 + |z|2

)
.
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Indeed, it suffices to substituting (4.59) into the expression

ŵ∗
∞(z) := ŵ∞

(
e−ŵ∞(z0)r

−1/4
0 z + z0

)
− ŵ∞(z0)−

1

4
log

r0
6
.

We thus obtain the alternative (ii)(a) in Theorem 4.7.

Case 2. We now suppose that lim supk→+∞ rk/
√
λk > 0. Since rk/

√
λk is bounded from

above and |zk| = O(
√
λk)kր+∞, we may assume that

lim sup
k→+∞

rk√
λk

= d0 > 0

and that

lim sup
k→+∞

zk√
λk

= ~c0

for some constant vector ~c0. This together with (4.27) and (4.43) implies that there exists

some constant r0 with 8π2 6 r0 6 64π2 such that

lim sup
k→+∞

f̂k(z) = r0

(
1 +

1

2
Hessf0(x0)

[
~c0 + d0z,~c0 + d0z

])

uniformly in B̂R(0). Arguing the same way as in the proof of Case 1 to obtain (4.57), the

limiting function ŵ∞ solves the equation

∆2
zŵ∞ = r0

(
1 +

1

2
Hessf0(x0)

[
~c0 + d0z,~c0 + d0z

])
e4ŵ∞ (4.60)

in R
4. Furthermore, in view of (4.45) and the L1-bound (4.10), we have

∫

R4

e4ŵ∞ dz < +∞

and ∫

R4

∣∣∣1 + 1

2
Hessf0(x0)[~c0 + d0z, ~c0 + d0z]

∣∣∣e4ŵ
∗
∞(z) dz < +∞.

By denoting

F∞ = r0

(
1 +

1

2
Hessf0(x0)[~c0 + d0z, ~c0 + d0z]

)
,

it follows from the decomposition

Pĝk(ŵk − ŵ∞) + (Pĝk −∆2
z)ŵ∞ =

(
αkf̃λk

◦ Γk + h̃k ◦ Γk − F∞
)
e4ŵk(z)

+ F∞(e4ŵk − e4ŵ∞)

and (4.7) that ŵk → ŵ∞ strongly in H4
loc(R

4) as k → +∞.

Finally, by performing a translation and a scaling, equation (4.60) can be reduced as

∆2
zŵ∞ =

(
1 +

1

2
Hessf0(x0)

[
z, z

])
e4ŵ∞ .

We thus obtain the alternative (ii)(b) in Theorem 4.7. �

The proof of Theorem 4.7 is complete. �

4.3.2. Degenerate case. Now we consider the degenerate case. An analogue of Theorem

4.7 is the following result.

Theorem 4.8. Assume all the conditions, expcept for the assumption of the non-degeneracy

of the function f0 at some maxima, in Theorem 4.7 above. If, in addition, (M, g0) is locally

conformally flat and f0 satisfies the Condition A with d0, A0 > 0, then for wk defined as

in the Theorem 4.7 there exist suitable I ∈ N with I 6 8, r
(i)
k ց 0 and x

(i)
k → x

(i)
∞ ∈ M

with f0(x
(i)
∞ ) = 0, 1 6 i 6 I such that the following hold
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(i) wk → −∞ locally uniformly on

M∞ = M\{x(i)
∞ : 1 6 i 6 I}.

(ii) For each 1 6 i 6 I , we have

ŵk(z) := w̃k

(
z
(i)
k + r

(i)
k z

)
+ log r

(i)
k → ŵ∞(z)

strongly in H4
loc(R

4), where z
(i)
k = exp−1

x
(i)
∞
(x

(i)
k ) and ŵ∞ induces a metric

g∞ = e4ŵ∞gR4

on R
4 of locally bounded curvature and of volume less than or equal 1.

Proof. For simplicity and clarity, we still use the notations in the proof of Theorem 4.7. We

first notice that Lemma 4.6 and the upper bound for
∫
M |Qgk | dµgk as in (4.10) continue

to hold even if f0(x) has a degenerate maxima. Consequently, the bounds for αkλk as in

(4.27) also holds as well.

PART 1. The proof of statement (i) in Theorem 4.8 is then identical with that of the

corresponding statement in Theorem 4.7.

PART 2. We now examine the blow-up behavior of wk near the blow-up point x0. Since

(M, g0) is locally comformally flat, we may assume that M is flat around x0, namely

(g0)ij = δij

in Bδ(x0) for some fixed but small δ > 0.

Claim 1. There is a constant ρ0 > 0 such that for each ρ ∈ (0, ρ0) to be determined later,

there exists a sequence of positive numbers (rk)k and a sequence of points (xk)k ⊂ Bδ(x0)
satisfying





lim
k→+∞

rk = 0,
∫

Brk
(xk)

e4wk dµg0 = ρ,

xk → x0 and wk(xk) → +∞ as k → ∞,
∫

Brk
(y)

e4wk dµg0 6 ρ for all y ∈ B√
rk(xk).

(4.61a)

(4.61b)

(4.61c)

(4.61d)

Proof of Claim 1. The proof of (4.61) is essentially similar to the proof of (4.35). Notice

that in the degenerate case we cannot assert an upper bound for rk/
√
λk as shown in

(4.35a). However, we still have the estimate rk = o(1)kր+∞ shown in (4.61a). To realize

this, we first notice by Lemma 4.6, the estimate Q+
gk

6 αkλk + |hk|, (4.27) and (4.7) that

8π2 − o(1)kր+∞ 6

∫

Br(x0)

Q+
gk
e4wk dµg0 6 (64π2 + o(1)kր+∞)

∫

Br(x0)

e4wk dµg0

(4.62)

for all r > 0. In particular, we have
∫

Bδ(x0)

e4wk dµg0 >
7

65
=: ρ0

for k large. With the help of the above estimate, we can follow the proof of Claim 1 in

Theorem 4.7 to obtain that for each ρ ∈ (0, ρ0) there exists rk ∈ (0, δ) such that

sup
x∈Bδ(x0)

∫

Brk
(x)

e4wk dµg0 = ρ.
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This implies that ∫

Brk
(x0)

e4wk dµg0 6 ρ. (4.63)

We are now ready to conclude (4.61a). Indeed, by the way of contradiction and up to a

subsequence, we may assume that limk→+∞ rk = r0 > 0. Then, there holds Br0/2(x0) ⊂
Brk(x0) provided k is sufficiently large. This together with (4.63) and the choice of ρ
yields ∫

Br0/2(x0)

e4wk dµg0 6 ρ <
7

65
.

But this contradicts with (4.62) and the proof of (4.61a) is complete. As for the other

assertions in (4.61), their proofs are identical with those of Claim 1 in Theorem 4.7. �

Lacking of a bound for rk/
√
λk brings us difficulty to obtain a local bound for αkf̃λk

◦
Γk as in (4.44). However, under an additional hypothesis on the flatness of (M, g0) we

can proceed with some tools developed in [Mar09] together with Condition A to regain its

local boundedness; see Claim 3 below.

Now, since (M, g0) is locally comformally flat, we may assume that M is flat around

x0, namely

(g0)ij = δij

in Bδ(x0) for some fixed but small δ > 0. On one hand, this helps us to conclude that

dµg̃0 = exp∗x0
(dµg0) = dz .

This and the relation ĝk = r−2
k Γ∗

kg̃0 imply that

dµĝk = r−4
k dµΓ∗

k
g̃0 = dz .

On the other hand, the Paneitz operator becomes the bi-Laplace operator in Bδ(x0). The

equation (4.5) becomes

∆2wk = αkfλk
e4wk + hke

4wk

in Bδ(x0). Let ŵk be defined as in (4.37), then ŵk solves

∆2ŵk = f̂ke
4ŵk (4.64)

in D̂k,δ , where, as before,

f̂k = αkf̃λk
◦ Γk + h̃k ◦ Γk

and

D̂k,δ := {z ∈ R
4 : |zk + rkz| < δ}.

Also because B̂1/2(0) ⊂ (expx0
◦Γk)

−1(Brk(xk)) ⊂ B̂2(0) it follows from (4.61b) that
∫

B̂1/2(0)

e4ŵk dz 6 ρ 6

∫

B̂2(0)

e4ŵk dz (4.65)

and, similar to (4.41), we rewrite (4.61d) to get
∫

B̂1/2(z)

e4ŵk dz 6 ρ, (4.66)

for all z ∈ B̂1/(2
√
rk)(0).

Claim 2. The sequence ŵk is bounded in W 3,s
loc (R

4) for any 1 < s < 4/3.

Proof of Claim 2. Fix any R > 8, we let ŵ
(±)
k solve





∆2ŵ
(±)
k = (∆2ŵk)

± in B̂R(0),

ŵ
(±)
k = 0 on ∂B̂R(0),

∆ŵ
(±)
k = 0 on ∂B̂R(0).

(4.67)
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Using the maximum principle twice, we obtain ŵ
(+)
k > 0 > ŵ

(−)
k . In addition, ŵk can be

decomposed as

ŵk = ŵ
(+)
k + ŵ

(−)
k + ŵ

(0)
k , (4.68)

where ŵ
(0)
k solves 




∆2ŵ
(0)
k = 0 in B̂R(0),

ŵ
(0)
k = ŵk on ∂B̂R(0),

∆ŵ
(0)
k = ∆ŵk on ∂B̂R(0).

The next goal is to show the boundedness of ŵ
(+)
k in W 4,s0

loc (R4) for some s0 > 1. To see

this, we observe, by (4.27), (4.66) and (4.7), the bound
∫

B̂r(z)

(
∆2ŵk

)+
dz =

∫

B̂r(z)

f̂+
k e4ŵk dz

6

∫

B̂r(z)

αk

(
f̃k ◦ Γk

)+
e4ŵk dz +

∫

B̂r(z)

∣∣h̃k ◦ Γk

∣∣e4ŵk dz

6 65π2ρ+ o(1)kր+∞

for all z ∈ B̂R/2(0) and for r > 0 small. Hence, by choosing ρ sufficiently small we

obtain the bound ∫

B̂r(z)

(
∆2ŵk

)+
dz < 8π2

for all z ∈ B̂R/2(0) and for r > 0 small. In view of the equation (4.67) satisfied by ŵ
(±)
k ,

we can apply [Lin98, Lemma 2.3] and a finite covering argument to find a positive constant

s1 > 1 such that ∫

B̂R/2(0)

e4s1ŵ
(+)
k dz 6 CR. (4.69)

Keep in mind that f̂+
k 6 αkλk+ |h̃k ◦Γk|. Hence, by repeating an argument used in (4.55)

together with (4.69) we can find some 1 < s0 < min{4/3, s1} such that
∫

B̂R/2(0)

(
f̂+
k e4ŵk

)s0
dz

6 C

∫

B̂R(0)

(αkλk)
s0e4s0ŵk dz +C

∫

B̂R(0)

|h̃k ◦ Γk|s0e4s0ŵk dz 6 CR.

Plugging the estimate above into (4.67) gives
∫

B̂R/2(0)

|∆2ŵ
(+)
k |s0 dz 6 CR.

This together with Sobolev’s inequality implies that ŵ
(+)
k is bounded in W 4,s0

loc (R4). There-

fore, ŵ
(+)
k is bounded in C0,α

loc (R
4) for some 0 < α 6 1 − 1/s0. Moreover, we let

γ = 1/17. It then follows from (4.10) that

γ

∫

B̂R(0)

|∆2ŵk| dz 6 γ

∫

B̂R(0)

∣∣f̂k
∣∣e4ŵk dz 6 γ

∫

M

|Qgk | dµg0 < 8π2.

Then repeating the previous argument we have
∫

B̂R/2(0)

e±4s1γŵ
(−)
k dz 6 CR. (4.70)

Also, there holds ∥∥ŵ(±)
k

∥∥
W 3,s(B̂R(0))

6 CR (4.71)
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for all s ∈ [1, 4/3). Now, it follows from Jensen’s inequality, the decomposition of ŵk in

(4.68), Hölder’s inequality, and (4.70) that

exp
(
−
∫

B̂r(z)

ŵ
(0)
k dz

)
6

(
−
∫

B̂r(z)

e
4s1γ

1+s1γ ŵ
(0)
k dz

) 1+s1γ
4s1γ

6

(
−
∫

B̂r(z)

e
4s1γ

1+s1γ (ŵk−ŵ
(−)
k )

dz

) 1+s1γ
4s1γ

6

(
−
∫

B̂r(z)

e4ŵk dz

) (1+s1γ)2

4(s1γ)2
(
−
∫

B̂r(z)

e−4s1γŵ
(−)
k dz

) 1
4s1γ

6 CR

(4.72)

for all z ∈ B̂R/4(0) and for r > 0 small. In (4.72), the symbol −
∫
Ω
h denotes the average of

h over Ω. Notice that the estimate (4.47) also holds in the current case. This together with

(4.71) implies that

‖∆ŵ
(0)
k ‖L1(B̂R(0)) 6 ‖∆ŵk‖L1(B̂R(0)) + ‖∆ŵ

(+)
k ‖L1(B̂R(0)) + ‖∆ŵ

(−)
k ‖L1(B̂R(0)) 6 CR.

Since ∆(∆ŵ
(0)
k ) = 0, we can apply [Mar09, Proposition 11] to get

‖∆ŵ
(0)
k ‖Cl(B̂R/2(0))

6 CR(l) (4.73)

for every l ∈ N. Notice that by the mean value property for biharmonic functions, see

[ARS06, Lemma 2.2], we have

ŵ
(0)
k (z) = −

∫

B̂r(z)

ŵ
(0)
k dz +

r2

12
∆ŵ

(0)
k (z).

This together with (4.72) and (4.73) implies that

ŵ
(0)
k (z) 6 CR

for all z ∈ B̂R/4(0). In view of (4.73), we may apply weak Hanack inequality, see [GT98,

Theorem 8.18], to the function CR − ŵ
(0)
k to obtain that

• either ŵ
(0)
k uniformly converges to −∞ on B̂R/4(0)

• or ‖ŵ(0)
k ‖L1(B̂R/2(0))

6 CR.

If the first case occurs, then from the decomposition of ŵk in (4.68) and the boundedness

of ŵ
(+)
k in C0,α

loc (R
4), we know that

ŵk 6 CR + w
(0)
k ,

which immediately implies that ŵk → −∞ uniformly on B̂R/4(0) as k → ∞. From this

we deduce that ∫

B̂R/4(0)

e4ŵk dz → 0

as k → +∞, which contradicts (4.65) since we have chosen R > 8. Hence, we must have

‖ŵ(0)
k ‖L1(B̂R/2(0))

6 CR.

We then apply [Mar09, Proposition 11] again to get

‖ŵ(0)
k ‖Cl(B̂R/4(0))

6 CR(l)

for every l ∈ N and

‖ŵ(0)
k ‖W 3,s(B̂R/4(0))

6 CR(s)
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for every 1 < s < 4/3. Clearly, the estimate of ŵ
(0)
k in Cl(B̂R/4(0)) above together with

the decomposition of ŵk in (4.68) implies that

ŵk 6 CR (4.74)

in B̂R/4(0). Moreover, the estimate of ŵ
(0)
k in W 3,s(B̂R/4(0)) together with (4.71) tells us

that ŵk is bounded in W 3,s(B̂R/4(0)). Since R is arbitrary, the sequence ŵk is bounded

in W 3,s
loc (R

4) for any 1 < s < 4/3. �

From Claim 2, up to a subsequence, there holds

ŵk ⇀ ŵ∞

weakly in W 3,s
loc (R

4) for some 1 < s < 4/3 and almost everywhere on R
4. By Fatou’s

lemma and (4.30), we can deduce that
∫

B̂R/2(0)

e4ŵ∞ dz 6 lim inf
k→∞

∫

B̂R/2(0)

e4ŵk dz

= lim inf
k→∞

∫

B̂Rrk/2(zk)

e4w̃k dz

6 lim inf
k→∞

∫

BRrk
(xk)

e4wk dµg0

6 1.

Passing to the limit as R → +∞ we find that e4ŵ∞ ∈ L1(R4) with
∫

R4

eŵ∞ dz = lim
R→+∞

∫

B̂R/2(0)

e4ŵ∞ dz 6 1.

Now, recall αkf̃λk
◦ Γk = αkλk + αkf̃0 ◦ Γk and for simplicity, we denote

f̂0k = αkf̃0 ◦ Γk,

which is non-positive. By (4.27), we may assume, up to a subsequence, that

αkλk → µ ∈ [8π2, 64π2]

as k → +∞.

Claim 3. The sequence αkf̃0 ◦ Γk is locally bounded (from below).

Proof of Claim 3. Suppose that for some sequence yk → y0 in R
4 there holds

αk|f̃0(z̄k)| → +∞
as k → +∞, where

z̄k = Γk(yk) = zk + rkyk.

Denote pk = expx0
(z̄k). Because z̄k → 0 as k → +∞, we then have pk → x0 ∈ M0 as

k → +∞. From this we may assume from the beginning that d(pk) < d0. By Condition

A, there exist some A0 > 0 and a sequence of cones Kpk
with vertex at pk such that

A0 inf
y∈K̃pk

∣∣αkf̃0(Γk(y))
∣∣ = A0αk inf

z∈Kpk

∣∣f̃0(z)
∣∣ > αk

∣∣f̃0(z̄k)
∣∣ → +∞, (4.75)

where with a suitable labeling of coordinates

K̃pk
= Γ−1

k (Kpk
) =

{
z : zk + rkz ∈ Kpk

}

=
{
y = (y1, ..., y4) :

√√√√
3∑

i=1

(yi − yik)
2 < y4 − y4k, |y − yk| < d0/rk

}
.



38 Q.A. NGÔ AND H. ZHANG

On the other hand, by the estimate αk|f̃0 ◦ Γk| = αkλk − αkf̃λk
◦ Γk and the fact that∫

M
fλk

e4uk dµg0 = 0, as routine we can apply Fatou’s lemma to get that
∫

B̂R/2(0)

lim inf
k→+∞

(
αk|f̃0 ◦ Γk|

)
e4ŵ∞ dz 6 lim inf

k→+∞

∫

B̂R/2(0)

αk|f̃0 ◦ Γk|e4ŵ∞ dz

6 lim inf
k→+∞

∫

B̂Rrk/2(zk)

(αkλk − αkf̃λk
)e4w̃k dz

= lim inf
k→+∞

∫

BRrk
(xk)

(αkλk − αkfλk
)e4wk dµg0

6 µ.
(4.76)

We thus obtain the contradiction from (4.75) and (4.76), namely, the sequence f̂0k is locally

bounded. �

We now make use of Claim 3 together with the local upper bound of ŵk in (4.74) to

ensure, up to a subsequence, that

αk(f̃0 ◦ Γk)e
4ŵk

∗
⇀ f̂∞e4ŵ∞

weakly-* in the sense of measures, where f̂∞ 6 0 is locally bounded from below. By

setting

F∞ = µ+ f̂∞

and recall the definition of f̂k and µ we know that

f̂ke
4ŵk

∗
⇀ F∞e4ŵ∞

weakly-* in the sense of measures. Furthermore, we get from (4.10) the following bound∫

R4

|F∞|e4û∞ dz 6 2µ 6 128π2.

Claim 4. The sequence ŵk is bounded in H4
loc(R

4).

Proof of Claim 4. By repeating the estimate in (4.51), it follows from the local boundedness

of αkf̃λk
◦Γk established in Claim 3, the local upper boundedness of ŵk in (4.74), and the

smallness of ‖hk‖L2(M,gk) in (4.7) that
∫

B̂R/4(0)

∣∣f̂ke4ŵk
∣∣2 dz 6 C

∫

B̂R/4(0)

∣∣αkf̃λk
◦ Γk

∣∣2e8ŵk dz +C

∫

B̂R/2(0)

|h̃k ◦ Γk|2e8ŵk dz

6 CR + CR

∫

B̂R/2(0)

|h̃k ◦ Γk|2e4ŵk dz

6 CR + CR‖hk‖2L2(M,gk)
6 CR.

This together with the equation satisfied by ŵk in (4.64) implies that ŵk is bounded in

H4
loc(R

4). �

In view of Claim 4, we have that

ŵk ⇀ ŵ∞

weakly in H4
loc(R

4) and strongly in C0,α
loc (R

4) for some 0 < α < 1/2. Moreover, by

passing to the limit we deduce that ŵ∞ solves the equation

∆2ŵ∞ = F∞e4û∞

in R
4. Finally, it follows from the decomposition

∆2ŵk −∆2ŵ∞ =
(
αkf̃λk

◦ Γk + h̃k ◦ Γk − F∞
)
e4ŵk + F∞(e4ŵk − e4ŵ∞)

that ŵk → ŵ∞ strongly in H4
loc(R

4).



BUBBLING OF THE PRESCRIBED Q-CURVATURE EQUATION 39

�

5. BUBBLING ALONG THE FLOW

As in the case of Gaussian curvature flow studied by Struwe, it is unreasonable to expect

that Theorem also holds for non-minimizing critical points

5.1. Bounds for total curvature along the flow. Bounds analogue to Lemma 4.5 can also

be obtained for the solutions to the prescribed Q-curvature flow (2.6) for fλ.

As in the static case, let f0 6 0 be a smooth, non-constant function with maxM f0 = 0.

Let 0 < λ < λ0 and let fλ = f0 + λ as above where λ0 > 0 is chosen in such a way that

fλ0 changes sign and satisfies (1.3), namely
∫
M

fλ0 dµg0 < 0. For any 0 < λ < λ0 and

any σ ∈ (−σ0, 0), where the number σ0 = σ0(λ) will be determined in Lemma 5.2 below,

we choose uσ
0λ ∈ X∗

fλ
such that

E (uσ
0λ) 6 βλ + σ2, (5.1)

where, as in (2.4), we set

βλ = min
{
E (u) : u ∈ X∗

fλ

}
.

For such an initial data uσ
0λ, it follows from Theorem 2.5 that the flow (2.6) possesses the

smooth solution

uσ
λ = uσ

λ(t)

with ασ
λ = ασ

λ(t). We also let gσλ = e2u
σ
λg0.

First, we establish the following simple result.

Lemma 5.1. For any real number α, there exists a constant CB > 0 independent of α and

time such that ∫

M

eαu
σ
λ dµg0 < CB ,

where uσ
λ is a solution to the flow (2.6) with the initial data uσ

0λ satisfying (5.1).

Proof. Observe that uσ
λ ∈ X∗

fλ
and

∫

M

eαu
σ
λ dµg0 = eαu

σ
λ

∫

M

eα(u
σ
λ−uσ

λ) dµg0 .

Of course the case α = 0 is trivial. If α < 0, then as in the proof of Lemma 4.1 we apply

Adam’s inequality (3.2) to get

e−4uσ
λ =

∫

M

e4(u
σ
λ−uσ

λ) dµg0 6 CA exp
( 1

16π2
E (uσ

0λ)
)
.

Using this, we can bound
∫
M

exp(αuσ
λ) dµg0 from above as follows

∫

M

eαu
σ
λ dµg0 6

(
CA exp

( 1

16π2
E (uσ

0λ)
))|α|/4

CA exp
( α2

256π2
E (uσ

0λ)
)
.

If α > 0, then as in the proof of Lemma 4.6 we know that uσ
λ 6 0, which then implies that

∫

M

eαu
σ
λ dµg0 6

∫

M

eα(u
σ
λ−uσ

λ) dµg0 6 CA exp
( α2

256π2
E (uσ

0λ)
)
.

Putting these estimates together we obtain the existence of CB . Clearly, CB is independent

of α and time, however, CB depends on σ0 and λ. �

The following lemma is the key result of this section.
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Lemma 5.2. There holds

lim inf
λց0

lim sup
σր0

lim sup
t→+∞

∫

M

|Qgσ
λ
| dµgσ

λ

6 2 lim inf
λց0

lim sup
σր0

lim sup
t→+∞

(λασ
λ(t)) 6 2 lim inf

λց0
(λ|β′

λ|) 6 128π2.

Proof. We split our proof into two steps as follows.

Step 1. We claim that for any 0 < λ < λ0 we can find some σ0 = σ0(λ) > 0 sufficiently

small such that for each t > 0 and σ ∈ (−σ0, 0) we have

uσ
λ + σfλ ∈ Xfµ

for some µ = µ(t) > λ with

C−1|σ| 6 |µ− λ| 6 C|σ|,
where C > 0 is constant independent of t and σ. To see this, we notice from (2.9) that

uσ
λ(t) ∈ X∗

fλ
for all t > 0. By mean value theorem, there exists two functions σ′, σ′′

valued in (σ, 0) such that
∫

M

fλe
4(uσ

λ+σfλ) dµg0 =

∫

M

fλ

[
e4(u

σ
λ+σfλ) − e4u

σ
λ

]
dµg0

= 4σ

∫

M

f2
λe

4(uσ
λ+σ′fλ) dµg0

and ∫

M

e4(u
σ
λ+σfλ) dµg0 = 1 +

∫

M

[
e4(u

σ
λ+σfλ) − e4u

σ
λ

]
dµg0

= 1 + 4σ

∫

M

fλe
4uσ

λ dµg0 +8σ2

∫

M

f2
λe

4(uσ
λ+σ′′fλ) dµg0

= 1 + 8σ2

∫

M

f2
λe

4(uσ
λ+σ′′fλ) dµg0 .

Therefore, in view of the identity
∫

M

fµe
4(uσ

λ+σfλ) dµg0 =

∫

M

fλe
4(uσ

λ+σfλ) dµg0 +(µ− λ)

∫

M

e4(u
σ
λ+σfλ) dµg0 ,

if we let µ be

µ = λ− 4σ
∫
M f2

λe
4(uσ

λ+σ′fλ) dµg0

1 + 8σ2
∫
M

f2
λe

4(uσ
λ+σ′′fλ) dµg0

> λ, (5.2)

depending on t, then uσ
λ + σfλ ∈ Xfµ . To bound |µ − λ|, we need further estimates for

numerator and denominator of µ in (5.2). First we note by Hölder’s inequality that
∫

M

f2
λe

4(uσ
λ+σ′fλ) dµg0 >

(∫

M

fλ dµg0

)2(∫

M

e−4(uσ
λ+σ′fλ) dµg0

)−1

.

Because∫

M

e−4(uσ
λ+σ′fλ) dµg0 =

( ∫

{fλ60}
+

∫

{fλ>0}

)
e−4(uσ

λ+σ′fλ) dµg0

6 exp
(
4|σ|‖fλ‖L∞(M,g0)

) ∫

{fλ60}
e−4uσ

λ dµg0 +

∫

{fλ>0}
e−4uσ

λ ,

which implies that
∫

M

e−4(uσ
λ+σ′fλ) dµg0 6 2

∫

M

e−4uσ
λ dµg0
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if we further choose |σ| sufficiently small. From this and Lemma 5.1 we deduce that there

exists some positive constant c(λ, σ0) depending only on λ and σ0 such that
∫

M

f2
λe

4(uσ
λ+σ′fλ) dµg0 > c(λ, σ0) (5.3)

for any 0 < λ < λ0, any σ ∈ (−σ0, 0), and any σ′ ∈ (σ, 0). Moreover, it is easy to see

that∫

M

f2
λe

4(uσ
λ+σ′fλ) dµg0 6 ‖fλ‖2L∞(M,g0)

exp
(
4|σ|‖fλ‖L∞(M,g0)

) ∫

M

e4u
σ
λ dµg0

6 ‖fλ‖2L∞(M,g0)
exp

(
4|σ0|‖fλ‖L∞(M,g0)

) (5.4)

for any t > 0 and any σ′ ∈ (σ, 0). From this we can bound |µ− λ| from above as follows

|µ− λ| 6 4|σ|
∫

M

f2
λe

4(uσ
λ+σ′fλ) dµg0

6 4‖fλ‖2L∞(M,g0)
exp

(
4|σ0|‖fλ‖L∞(M,g0)

)
|σ|.

Moreover, we can also bound |µ−λ| from below, thanks to (5.3) and (5.4). Hence, for any

0 < λ < λ0 we can find σ0 = σ0(λ) > 0 such that

C(λ)−1|σ| 6 |µ− λ| 6 C(λ)|σ|
for all σ ∈ (−σ0, 0), where C(λ) > 0 is independent of t > 0 and σ but could depend on

λ. The claim is thus proved.

Step 2. It follows from [NZ17, Lemmas 4.1 and 6.3 ] that ασ
λ(t) and uσ

λ(t) are uniformly

bounded in time t and σ. Notice that by the relations

Qgσ
λ
e4u

σ
λ = Pg0u

σ
λ, uσ

λ,t = ασ
λfλ −Qgσ

λ

we can expand E (uσ
λ + σfλ) to get

E (uσ
λ + σfλ) = E (uσ

λ) + 4σ

∫

M

Pg0u
σ
λfλ dµg0 +σ2

E (fλ)

= E (uσ
λ) + 4σασ

λ

∫

M

f2
λe

4uσ
λ dµg0 −4σ

∫

M

uσ
λ,tfλe

4uσ
λ dµg0 +σ2

E (f0).

Observing that [NZ17, Lemma 6.1] yields
∫

M

|uσ
λ,t|2e4u

σ
λ dµg0 =

∫

M

|ασ
λfλ −Qσ

λ|2e4u
σ
λ dµg0 → 0 (5.5)

as t → +∞. Hence, by (2.8) and Hölder’s inequality, we can estimate

∣∣∣
∫

M

uσ
λ,tfλe

4uσ
λ dµg0

∣∣∣ 6 ‖fλ‖L∞(M,g0)

(∫

M

|uσ
λ,t|2e4u

σ
λ dµg0

)1/2

→ 0

as t → +∞. Since the energy E (uσ
λ) is decay along the flow, we have, by (5.1) and the

expansion of E (uσ
λ + σfλ) above, that

βµ 6 E (uσ
λ + σfλ)

6 E (uσ
λ) + 4σασ

λ

∫

M

f2
λe

4uσ
λ dµg0 +σ2

E (f0) + o(1)

6 βλ + 4σασ
λ

∫

M

f2
λe

4uσ
λ dµg0 +σ2(1 + E (f0)) + o(1).

However, from (5.2) we obtain

4σ

∫

M

f2
λe

4uσ
λ dµg0 = λ− µ+ 4σI,
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with

I =

∫

M

f2
λhe

4uσ
λ dµg0 ,

where

h = 1− e4σ
′fλ

1 + 8σ2
∫
M f2

λe
4(uσ

λ+σ′′fλ) dµg0

.

Clearly

|h| 6 8σ2

∫

M

f2
λe

4(uσ
λ+σ′′fλ) dµg0 +

∣∣1− e4σ
′fλ

∣∣.

Because σ′ ∈ (σ, 0), there is some constant C > 0 independent of t and σ such that

‖h‖L∞(M,g0) 6 C|σ|.
Keep in mind that uσ

λ ∈ X∗
fλ

. From this we can use (2.8) to bound I as follows

|I| 6 ‖fλ‖2L∞(M,g0)
‖h‖L∞(M,g0) 6 C(λ)|µ− λ|,

where C(λ) > 0 is a uniform constant independent of t and σ. Therefore, with error

o(1) → 0 as t → +∞ and the uniform bound of ασ
λ in t and in σ we arrive at the estimate

βµ 6 βλ + ασ
λ(λ − µ+ 4σI) + σ2(1 + E (f0)) + o(1)

= βλ − ασ
λ(µ− λ) +O(1)(µ − λ)2 + o(1),

where O(1) is independent of t but could depend on λ and σ0. This implies that

lim sup
t→+∞

ασ
λ(t) 6 lim sup

t→+∞

(βλ − βµ

µ− λ
+O(1)(µ− λ)

)
.

Now, as σ ր 0, we have from (5.2) that µ ց λ uniformly in time t > 0. So, for almost

every λ ∈ (0, λ0) there holds

lim sup
σր0

lim sup
t→+∞

ασ
λ(t) 6 lim

µցλ

βλ − βµ

µ− λ
= |β′

λ|.

Multiplying both sides by λ > 0, as in the proof of Lemma 4.5, we find that

lim inf
λց0

lim sup
σր0

lim sup
t→+∞

(λασ
λ) 6 lim inf

λց0
(λ|β′

λ|) 6 64π2.

Finally, it follows from the flow equation (2.6) and (4.4) that

|Qgσ
λ
| 6 ασ

λ|fλ|+ uσ
λ,t 6 2λασ

λ − ασ
λfλ + uσ

λ,t,

which then gives
∫

M

|Qgσ
λ
| dµgσ

λ
6 2λασ

λ +

∫

M

|uσ
λ,t| dµgσ

λ
= 2λασ

λ + o(1),

thanks to (2.8) and (5.5). From this the lemma follows. �

5.2. Bubbling of the prescribed curvature flow. In this subsection, we devote ourselves

to prove the blow-up behavior along the prescribedQ-curvature flow, namely Theorem 2.6.

From Lemma 5.2, it follows that there exists a sequence λk ց 0 such that

sup
k∈N

lim sup
σր0

lim sup
t→+∞

(λkα
σ
λk
(t)− 1/k) 6 64π2.

We may then fix a sequence σk ր 0 with

sup
k∈N

sup
σk6σ<0

lim sup
t→+∞

(λkα
σ
λk
(t)− 2/k) 6 64π2.

Choosing σ = σk for each k ∈ N, we find, for suitable Tk → +∞ satisfying

Fk(t) :=

∫

M

|uσk

λk,t
(t)| dµg

σk
λk

6 1/k
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for tk > Tk , we find the bound

sup
t>Tk

∫

M

|Qg
σk
λk

| dµg
σk
λk

6 sup
t>Tk

(
2λkα

σk

λk
+ Fk(t)

)
6 128π2 + 5/k, (5.6)

for any k ∈ N. Hence, if for each k ∈ N for any tk > Tk we let wk = uσk

λk
(tk), then wk

satisfies (4.5) with αk = ασk

λk
(tk) and hk = uσk

λk,t
(tk). From this we can apply Theorems

4.7 and 4.8 to get the desired result. This completes the proof of Theorem 2.6.
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(Q.A. Ngô) DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE, VIÊT NAM NATIONAL UNIVER-
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E-mail address: nqanh@vnu.edu.vn

E-mail address: bookworm vn@yahoo.com

(H. Zhang) SCHOOL OF MATHEMATICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, NO.96

JINZHAI ROAD, HEFEI, ANHUI, CHINA, 230026.

E-mail address: matzhang@ustc.edu.cn

E-mail address: mathongzhang@gmail.com

mailto: Q. A. Ngo <nqanh@vnu.edu.vn>
mailto: Q. A. Ngo <bookworm_vn@yahoo.com>
mailto: H. Zhang <matzhang@ustc.edu.cn>
mailto: H. Zhang <mathongzhang@gmail.com>

	1. Introduction
	1.1. The Kazdan–Warner result for the scalar curvature equation
	1.2. A Kazdan–Warner type result for the Q-curvature equation

	2. Main results
	2.1. Bubbling metrics in the static case
	2.2. Bubbling metrics along the prescribed curvature flow

	3. Notations and preliminaries
	4. Bubbling in the static case
	4.1. Bounds for total curvature
	4.2. Concentration of curvature
	4.3. Blow-up analysis

	5. Bubbling along the flow
	5.1. Bounds for total curvature along the flow
	5.2. Bubbling of the prescribed curvature flow

	Acknowledgments
	References

