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BUBBLING OF THE PRESCRIBED Q-CURVATURE EQUATION ON
4-MANIFOLDS IN THE NULL CASE

QUOC ANH NGO AND HONG ZHANG

ABSTRACT. Analog to the classical result of Kazdan—Warner for the existence of so-
lutions to the prescribed Gaussian curvature equation on compact 2-manifolds without
boundary, it is widely known that if (M, go) is a closed 4-manifold with zero Q-curvature
and if f is any non-constant, smooth, sign-changing function with fM fdug, <0, then
there exists at least one solution u to the prescribed Q-curvature equation

Pyou=f et

where P is the Paneitz operator which is positive with kernel consisting of constant
functions. In this paper, we fix a non-constant smooth function fy with

=0 d 0

max fo(z) =0, /M fodpgy <

and consider a family of prescribed @Q-curvature equations
Pgou= (fo+ A)e'™,

where A > 0 is a suitably small constant. A solution to the equation above can be obtained
from a minimizer u ) of certain energy functional associated to the equation. Firstly, we
prove that the minimizer ) exhibits bubbling phenomenon in a certain limit regime as
A \¢ 0. Then, we show that the analogous phenomenon occurs in the context of Q-
curvature flow.

1. INTRODUCTION

The problem of describing the set of curvatures that a given manifold can possess is of
importance in Riemannian geometry over the last 50 years starting from a seminal paper
in 1960, or even before, due to Yamabe [ Yam60] for the existence of conformal metrics
of constant scalar curvature on closed manifolds of dimension n > 3. Without limiting
to the case of constant scalar curvature, this problem is known as the prescribed scalar
curvature problem and has been a main research topic in conformal geometry in recent
decades. An analogue problem for manifolds of dimension 2, known as the prescribed
Gaussian curvature problem, can be formulated in a similar way.

1.1. The Kazdan-Warner result for the scalar curvature equation. Let ()M, go) be
a compact surface without boundary. Given a smooth function f on M, the prescribed
Gaussian curvature problem asks if there exists a conformal metric g such that the Gaussian
curvature of g is equal to f. By writing g = e2“g, the Gaussian curvature of the metric g,
denoted by K, satisfies the transformation law

Ky =e 2 (=Agu+ Ky).

This enables us to reduce the prescribed Gaussian curvature problem to the problem of
solving the semilinear PDE
— Dgyu+ Kgy = fe (1.1)
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Since Eq.(1.1) is conformally covariant, we obtain that if v solves
—Ag v+ K,y = fe*

for some g1 = eQ“’go, then u = v 4 w solves (1.1). This together with the uniformization
theorem implies that we can freely choose the background metric gg in such a way that
K, is a constant whose sign depends on the Euler characteristic of M. In the case that M
has genus one, namely, M is the torus, Eq. (1.1) becomes

— Ayu = fe* (1.2)
on M. In [KW74], Kazdan and Warner proved the following result:

Theorem 1.1 (see Kazdan—Warner [KW74]). There is a solution u to (1.2) if, and only if,
either f = 0, or if the function [ changes sign and satisfies

/ fdug, < 0. (1.3)
M

A solution u to (1.2) can be obtained by minimizing the Liouville energy
1
E(u) = 9 |vu|2 dpg,
M

in the class
Cr={uemMg): [ feau, =0},
M

We note that the constraint fM fe**dpg, = 0 in the class C is quite natural in view of
the Gauss—Bonnet theorem. Since the energy £ and the constraint in C'y is left unchanged
up to a constant addition, in order to show existence of a minimizer for £ in the class Cy,
one often restricts attention to those functions with vanishing mean. To be precise, we look
for minimizer of £ within the set

C}:{UGHl(M,gO):/ feQudugoz(),/ udugU:O}.
M M

However, normalizing the volume will work equally well, that is, we can also look for
minimizer of F within the set

Ci = {u € H' (M, go) : / fe* dpg, =0, / e dpg, = Vol(M,gO)}.
M M

In [Gall5], Galimberti showed “bubbling” of the Kazdan—Warner metrics in a certain limit
regime. To describe his result, we let fy be a non-constant and smooth function with
maxys fo = 0. Let A > 0 be small such that f\ = fo + A changes sign and satisfies (1.3).
Therefore, by Theorem 1.1 there exists a solution ) to (1.2), which can be obtained from
a minizer uy of E in the set C';, with f replaced by f». In fact, one can easily see that Ux
and u differ by a positive constant cy. With a delicate argument, he is able to control the
total curvature of the conformal metrics gy = e2%* gy for suibtable N\, 0 and hence to
show that after rescaling the metrics suitably near local maximum points of f, one or more
“bubbles” may be extracted from gy ; see [Gall5, Theorem 1.1].

Recently, Struwe [Str17] improves the result in [Gall5] by obtaining a more precise
characterization of the bubbling. He shows that “slow blow-up” does not occur; see [Str17,
Theorem 1.2]. This is achieved with the help of a new Liouville-type result; see [Strl7,
Theorem 1.3]. It is remarkable that the method developed in [Str17] is flexible enough
to apply also in the presence of perturbation leading to a similar “bubbling” phenomenon
for a family of prescribed curvature flows for f\ with suitably chosen initial data in C'y, ;
see [Strl17, Theorem 1.5].

In the last paragraph of Subsection 1.5 in [Str17], Struwe comments on future investi-
gation of “bubbling” metrics of prescribing ()-curvature equation in arbitrary even dimen-
sions n > 4. Inspired by his interesting work and comments, we aim to study the bubbling
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behavior of the prescribed Q-curvature equation in the null case. In fact, we have borrowed
many ideas from [Str17] in the proof of the main theorems in the paper.

1.2. A Kazdan-Warner type result for the ()-curvature equation. Let ()M, gp) be a
closed 4-dimensional Riemannian manifold endowed with a smooth background metric
go. An analogue of the conformal Laplacian in dimension 2 is the Paneitz operator P,
discovered by [Pan82]. To be more precise, it is defined in terms of the Ricci tensor Ricg,
and the scalar curvature scalg, as

. 2 .
Py, = AEO — div, ((§ scalg, go — 2 Rlcgo)d) ’

Associated to the Paneitz operator P, Branson [Bra85] found the ()-curvature which
enjoys many similar properties as the Gaussian curvatue in dimension 2. It is also given,
in terms of the Ricci tensor Ricg, and the scalar curvature I2,,, by

1 .
Quo =~ (Ago scaly, —R2, + 3| Ricy, [2).

An important topic about the ()-curvature is the prescribed ()-curvature problem which is
formulated as follows. Given a smooth function f on M, one may ask if there exists a
conformal metric g = e2*go with Q-curvature @, = f. To solve the geometric problem is
equivalent to finding the solution to the fourth order semilinear PDE.

Pyu+ Qg = fe*v (1.4)
There are many research works on the equation (1.4), see, for instance, [BFR06, Bre03,
CY95,DMOS8,LLL12,MS06, WX98] and references therein.

In this paper, we consider the prescribed (Q-curvature equation on 4-manifolds in the
null case, that is, [;, Qg, dpig, = 0. Due to the resolution of the constant Q-curvature
problem, we may assume, w.l.0.g., that the background metric gy has the null Q-curvature.
Then the equation (1.4) becomes

Py u= fetv. (1.5)

If f # 0, then it is necessary that f changes sign for the existence of a solution to (1.5),
since [,, fe** dug, = 0. However, unlike the two-dimensional case, [, f dug, < 0is
not necessary anymore. The following result shows that f a fdpg, < 0is still sufficient.

Theorem 1.2 (see Ge-Xu [GXO08]). Let (M, g) be a compact, oriented four-dimensional
Riemannian manifold. Assume that the Paneitz operator P 4 is positive with kernel con-
sisting of constant functions. If

sup f > 0 and / fdpg, <0,
M M
then there exists a smooth solution to (1.5).

In [GXO08], Ge and Xu proved that a solution to (1.5) may be obtained by minimizing
the energy

g(u) = 2<Pgou7 u>

under the constraint
F = {u € H*(M, go) : / fe** dug, = 0and / udprg, = 0}.
M M

Here, for u,v € H?(M, go), the inner product (P4, u, v) is defined as follows

2 .
<Pgou7 U> = /M [AQOUAQOU + gRgogo(vgouv vgo/U) - 2R’cho (vgou’ vgov)} d:u’go :
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However, similar to the case of (1.2), the authors showed, in [NZ17, Theorem A.1], that
the way of searching a solution is still successful if we minimize & () under the following
constraint

X;= {u € H*(M, go) : /M fe*" dpg, =0 and /Me““dugu = 1}-

2. MAIN RESULTS

We shall study “bubbling” of the prescribed @)-curvature equation on 4-manifolds in
two different contexts: the static case and the flow case.

2.1. Bubbling metrics in the static case. As in [Gall7,Str17], we let fy be a smooth,
non-constant function with max,cys f(z) = 0, and let fy = fo + A for any A € R. By
assuming that vol(M, go) = 1, we find that if

0< A< */ fo dﬂgo = Ao, 2.1
M

then fy changes sign and [, f djg, < 0. Hence, it follows from Theorem 1.2 that there
exists a solution wy to (1.5) with f replaced by f. In addition, [NZ17, Theorem A.1]
implies that u can be obtained as

’E,\ = u) + c)
from a minimizer u of & in the set X;x Here u ), satisfies
4
Py uy = ayfre™?, (2.2)

with ooy > 0 and ¢\ = (log ay)/4. Moreover, by setting

gr = > go,
we have
ay = el = / eluater) dpg, = vol(M,gy). (2.3)
M
Also, set
Bx:=E(un) =min {&(u) : u € X}, }. (2.4)

Then one will see from Lemma 4.1 below that 8y — 400 as A \, 0; Thus, one should
expect the bubbling phenomenon associated with the family of metrics g to occur.

The purpose of this part of the paper is to characterize the bubbling behavior of g.
First, when the function fj has only non-degenerate maxima, we have the following result:

Theorem 2.1. Assume that the Paneitz operator P, is positive with kernel consisting of
constant functions. Let fy < 0 be a smooth, non-constant function with maxy; fo = 0
having only non-degenerate maximum points. Then for suitable A\, 0, for uy, = uy, as

above and suitable I € N, r](:) N 0, x,(j) — acgo) € M with fo(:cg;)) =0,1<1< 1, as
k — 400 the following hold:

(i) ugp — —oo locally uniformly on My, = M\{zgo) 1 <i< I}

(i1) In normal coordinates around x((fo) set

(@ _ -1 .2 oo
% = exp (7)), Up=wugo exp_ () -

Then for each 1 < i < I, either
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(2) limsup,,_, o r](:)/\/)\k = 0and
Ug(z) =y (zl(cz) + r,(:)z)—i— log r,(:) = Uoo(2)
strongly in Hﬁ)c(R‘L), where Uso, up to a translation and a scaling, is given
by
f(z) = 1 ( 44/6 >
Uso(2) =log | ————
S\ + |22
and it induces a spherical metric
./g\oo = e4ax9R4
of Q-curvature

Ry, =1

on R*and 1 <_I <4, or
(b) limsupy_, ., r](;)/\/)\k > 0 and
up(z) = uy (z,gf) + 7‘](:)2’) + log r](:) = Uoo(2)

strongly in Hﬁ)c(R‘L), where U, up to a translation and a scaling, solves
1 . _
A%l (2) = (1 + §Hessf0 (x((;)) [2, z])e4“°°(z), (2.5)

In addition, the metric

aoo = e4uoo

gRr4

on R* has finite volume and finite total Q-curvature

Qy..(2) =1+ %Hessf0 (zgfo)) 2, 2]
and1 < 1 <8&.

Remark 2.2. Unlike the Struwe’s result in [Str17], the “slow blow-up” case (b) is unable
to be ruled out here. In fact, the limiting equation (2.5) associated with blow-up points x&)
with 1 < ¢ < I may have a solution with finite energy and finite total curvature. To see
this, one may apply a general existence result due to Chang and Chen [CCO1] to obtain

that there is a solution to
1 . _
A2, = (1 + 5 Hessy, (x((;)) 2, z})e‘l“‘”
with
/ et (2) 4y < +o0.
R4
and
1 . N
/ (1 + 5 Hessy, (x((fo))[z, z])e4“°°(z) dz < +oo0.
R4
(7) (1)

Since zs¢ is a non-degenerate maxima of fo, the matrix Hess s, (zs¢ ) is negative definite.
Consequently, we also have

Jo

Now, we consider the case that the function fy may have a degenerate maxima. To
describe our next result, motivated by [Str17], we propose the following condition on fj
analog to Condition A in [Str17].

1 ) ~
1+ 3 Hessy, (.Z'((;))[Z, z]‘e4“°°(z) dz < 4o0.
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Condition A: Let My = {z € M : fo(z) = 0} and d(z) = dist(x, My) for z € M.
There exist dy > 0 and Ay > 0 such that, letting

3

Y (=2 < 2t 2] < do}

i=1

Ky = {z = (24 2% 2,24 e RY:

for any z € M with 0 < d(z) < dy there is a rotated copy K, C R* of K, with vertex at
x such that in Euclidean coordinates z around x = 0 there holds

Ao inf |folexp, ()] > [fola)]

Since any function on a closed manifold with only non-degenerate maxima admits finitely
many maximum points, it is then clear to see that Condition A is automatically satisfied
by such functions. Let us take one example of a function fy satisfying Condition A. We
use (7,61, 02, 03) to denote the polar coordinates in the Euclidean space R?. Let fj be as
follows

0 ifr <1,

B 3
fo(r,01,02,03) = _e—l/(T—l)(Zsin(
=1

1
+0;) +4) ifr> 1.
r—1
Then it is straightforward to verify that the function f, above satisfies Condition A with
Ao = 7. Furthermore, fj; has degenerate maximum points.

Return to characterizing the bubbling behavior of gy in the degenerate situation, our
second result reads as follows.

Theorem 2.3. Assume all the conditions, expcept for the assumption of the non-degeneracy
of the function fo at a maxima, in Theorem 2.1 above. If, in addition, (M, go) is locally
conformally flat and fy satisfies the Condition A with dy, Ag > 0, then for uy, defined as
in the Theorem 2.1 there exist suitable I € N with I < §, 7’,(;) N\, 0 and xg) — zS,Q e M

with fo(x&)) =0, 1 < ¢ < I such that the following hold

(i) ugx — —oo locally uniformly on My, = M\{zgo) 1 <i< I}
(i) Foreach1 <1t < I, we have

T (2) =k (27 4+ 7172) +1og 1) = Tne(2)

strongly in H! (R%), where zl(ci) =exp ¢ (xg)) and Ue induces a metric
w50

ATUso

./g\oo =€ gRr4
on R?* of locally bounded curvature and of volume less than or equal 1.

Remark 2.4. By comparing Theorems 2.1 and 2.3, one can easily notice that in the degen-
erate case we made an extra assumption on the manifold (1, go) except for the Condition
A, that is, we require the manifold (M, go) to be locally conformally flat. It would be
interesting to investigate the bubbling phenomenon in the degenerate situation without as-
suming the locally conformal flatness.

2.2. Bubbling metrics along the prescribed curvature flow. In contrast to the statics
case, our second goal is to obtain an analogous bubbling behavior described in Theorem
2.1 for a family of prescribed @Q)-curvature flows for f) with suitably chosen initial data in
Xy, , where

Xy, = {u e HAM): | fre*dpuy = 0}.
M
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To describe our second result precisely, let us briefly recall the prescribed ()-curvature flow
introduced in [NZ17]. Let g)(t) = e2ux(t) go be a family of time-dependent conformal
metrics satisfying
2 — 2@y, —r()f)
ot ax AE)TX)gA
with the initial conformal metric gy (0) = e*“0 go. In terms of u,(¢), the evolution equa-

tion above becomes
0 — () ~ Qo .6
with the initial data
ux(0) = uoxr € Xy, .
The function ay = () is chosen in such a way that fM Ixdp,, remains constant,
namely,

d
< / frd,, =4 / wrefr sy, = 4 / (axfs — Qo) frduy, =0, @7)
dt M M M

Solving (2.7) for ay, gives
ay — Jar 12 Qqs ditg,
fM f/\2 dﬂgx
It is easy to verify that
Uy (t) € Xy,
for all ¢ > 0. We thus have by conformal invariant of Q-curvature that

1d
ZEVO](M, gx(t)) :/ urgdpy, = a,\/ Indpg, —/ Qg, duy, = 0.
M M M

Normalizing the initial metric g, (0) to satisfy vol(M, g»(0)) = 1, we then get

vol(M, gx(t)) :/ dpg, :/ dpg, o) =1 (2.8)
M M

for all £ > 0. This implies that
ux(t) € X3, (2.9)
forallt > 0.

By applying [NZ17, Theorem 1.1] to f, we obtain the sequential convergence of the
flow (2.6).

Theorem 2.5 (see Ng6—Zhang [NZ17]). The flow (2.6) has a smooth solution u(t) on
[0, +00). Moreover, there exists a suitable time sequence (t;); witht; — +ocoas j — 400
and a suitable non-zero constant ooy € R such that ux(t;) — usor in C°(M, go),
lax(tj) — acor| = 0and [|Q g, (t;) — dcorfallcs(r1,90) — 0 as j — +o00. Finally, s
satisfies
Pgouook = O‘oo)\fkeéluooX .

Forany 0 < A < Ap and any 0 € (—o0y,0), with the number oy = 0¢(\) to be

determined in Lemma 5.2 below, we choose uf, € X ;A such that

E(ugy) < Pr+ .
For such an initial data ug,, it follows from Theorem 2.5 that the flow (2.6) possesses the
smooth solution u§ = ug(t) with a§ = af(t). Unlike the case of prescribed Gaussian
curvature flow in the dimension two, the sign of . in the @)-curvature flow is unable
to be determined. So, we have to assume that there exist a sequence (\x)x, k& € N with

Ak N\ 0 as k — 400 such that awy, > 0 for all k£ large. With o, and T}, defined by (5.6)
below, we let, for a suitable time sequence (t ) with ¢t > T,

Up = uiz (tk), ap = a‘;’; (tk) (2.10)
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Now, our second result reads as

Theorem 2.6. Let fy be, respectively, as in the Theorems 2.1 and 2.3 above. Then for
A N\ 0 with asoy,, > 0, suitable upy, € X;Ak with & (uoy,,) — B, < 02 \( 0, and
sufficiently large ti, > Ty, — 400 as k — 400, the conclusions of Theorems 2.1 and 2.3
hold for uy, defined by (2.10).

Our paper is organized as the table of contents below.
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3. NOTATIONS AND PRELIMINARIES

In this brief section, we collect some useful facts frequently used throughout the paper.
First, given a function w on M, let us denote by w the average of w over (M, go), namely,

E:/ wdptg, -
M

(Keep in mind that vol(M, gg) = 1.) We shall use a double bar for w, namely w, if we
want to emphasize that the average of w is taking over M with any other conformal metric.

Recalling that the higher order Moser—Trudinger inequality for Paneitz operator P,
known as Adam’s inequality; see [Ada88, Theorem 2] states that if P, is self-adjoint and
positive with kernel consisting of constant functions, then there is some constant 64 > 0
such that

o (u—1)?
/M exp (327 <Pg0u7u>) dptgy < Ca 3.1)
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for every u € H2(M, go). As a consequence of (3.1) and Young’s inequality, we obtain
the following inequality

a2

/ exp (a(u — ﬂ)) dprg, <€aexp (—2<Pgou, u>) (3.2)
M 1287
for all real number c.

Now we collect some information of Green’s function, denoted by G, of the Paneitz
operator P, . By the results in [CY95], Green’s function G is symmetric and fulfills the
following properties:

(P1) G is smooth on M x M\diagonal;
(P2) there exists a positive constant 4 depending only on (M, go) such that

1 1
G ——1 —’ <
’ ($, y) ]2 og d(:L', y) G
for any x,y € M with x # y; while for its derivatives and for 1 < j < 3 there
holds %
viG <5
‘ (:rv y)| d(l’, y)_]

for any x,y € M with x # y.

As clearly described in [Mal06, page 145], the higher order estimates in (P2) are not shown
in [CY95] but they can be derived with the same approach, by an expansion of G at higher
order using the parametrix.

It is well known that if ¢ € L'(M, go) with @ = 0, then w solves
Pgow =¥,
if and only if
w(z) = E+/ G(z,y)e(y) dpig, - (3.3)
M

For convenience, we cite the following lemma proved in [Mal06, Lemma 2.3].
Lemma 3.1. Let (wy,)r, and (@i )i be two sequences of functions on (M, go) satisfying
Py wi = or

with ||| L1(a,g0) < o for some positive constant oy independent of k. Then for any
x € M, any small v > 0, and any s € [1,4/7) with j = 1,2, 3, there holds

/ |Vj wy|® dug, < 07"4_j87
By ()
where C, independent of k, is a positive constant depending only on o, M, and s.

To end the section, we provide the following concentration-compactness result proved
in [Mal06, Proposition 3.1].

Proposition 3.2. Let (wy, )y and ()1 be two sequences of functions on (M, go) satisfying
Pg,wi = ¢

with ||@r|| 1 (am,90) < Qo for some positive constant o independent of k. Then, up to a
subsequence, we have one of the following alternatives:

(i) either there exist some constant s > 1 and some positive constant C' independent
of k such that

/ e4s(wk—ﬁk) dﬂgo < 07
M
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(ii) or there exist points x1,%2,...,xr € M such that for any r > 0 and any i €
{1,..., L} one has

k——+oo

liminf/ lok| dpg, > 872
Br(zi)

Remark 3.3. As clearly stated in [Mal06], Proposition 3.2 remains valid if the metric g
is replaced by a sequence of metrics (gx)x which is uniformly bounded in C¥ (M, go) for
any N € N. It also holds true if one replaces M by any bounded open ball in R?, in which
all the functions are compactly supported.

4. BUBBLING IN THE STATIC CASE

In this section, we are going to prove the “bubbling” phenomena in the static case,
namely, Theorems 2.1 and 2.3.

4.1. Bounds for total curvature. We derive, in this subsection, the bounds for the total
@-curvature. As an initial step, we show the unboundedness of the minimum energy [y
defined in (2.4).

Lemma 4.1. As A\ \, O, there holds ) — +0c0.
Proof. Assume by contradiction that ) < C for some constant C'y. Thanks to uy € X ;A s

we can use & (uy) to bound exp(—4wy ) from above by applying Adams’ inequality (3.2)
as follows

—duy _ u éa(u/\)

Keep in mind that | fo| = —fo = A — f\. From this together with Holder’s inequality we
can estimate

0< ([ Ioldu, )

</ | fole 4 d,U/go/ | fole*™ dpug,
M M
< Ufolirame™™ [ e duy, [ et
M M
B
<A||fO||L°°<M.,go><53xexp( )

812

which is obviously a contradiction if A is sufficiently small. (]

The following monotonicity property result is a key gradient for the uniform bound of
the total Q-curvature of the metric gy = e*** gq.

Lemma 4.2. The function \ — (3 is non-increasing in X for small 0 < \ < \g and

ﬂ,u*ﬂ/\ <

lim sup < —ay,

INA A
where \g is given in (2.1).

Proof. Fix A € (0, \g). As always, let uy € X}A be a minimizer of & as above, namely

Jag Fre*> dpg, = 0and [, €*** dug, = 1. Then for small o € R we have, by Taylor’s
expansion, that

/ f)\e4(ux+ofx)dug0 :/ fa [64(ux+ofx) _ elua d,ugo
M M
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:/ ]"/\64“A [e“h — 1} dpg,
M
:40/ fre™> dug, +0(0?)
M
and

/ e4(u;+0fx)d‘ug0 =1 +/ €4u)‘ |:e40'f)\ _ 1i| d,ugo
M M

=1+ 40/ fret™> dpg, +O0(0?),
M

=14 0(c?).

So, for 0 < |o| < 1 sufficiently small, if we let
=\ 40/ fRe*™> dpg, +0(0?),
M
then we can find some constant ¢ such that
u,\—i—af,\—i—ceX;u. 4.1)

In particular, for o < 0 sufficiently close to zero, we have ¢ > X and 0 = O(u — A).
Notice that it follows from (2.2) that

E(ux+ofx+c) =2(ur+ofr+ ¢, Pgun + 0Py, fr)

=&(uy) + 4o / AP goun dpegy +202(fr, P gy fr)
M

=&(uy) + 400@/ fre*™ dug, +0(0?).
M
Now, by (4.1), we get that
Bu <E(ux+ofr+c)

<E(uy) + 40a,\/ fre*™ dug, +0(0?)
M

=Bxr —aa(p—A) +O((n — N)?) < Ba,

for 0 < 0 sufficiently close to zero. Hence the map A — /3, is non-increasing and

lim sup Bu = B < —ay
pNA BT A
as claimed. O
We can find the following bound on 53,.
Lemma 4.3. There holds
. 6)\ 2
lim sup ———— < 647~.
ANO P log(1/A)

Proof. Let pg € M be such that fo(po) = 0 and assume that A € (0, \o). By fixing a
natural number N > 5, we can find a smooth conformal metric gn = e?#¥ gy such that

det(gn) = 1+ O ), 4.2)

where r = |z| and x are g -normal coordinates around py which is identified as 0 in this
new coordinate system. Now, letting

1
A= §Hessf0 (po)-



12 Q.A.NGO AND H. ZHANG

Since pg is an isolated maxima of fy, for a suitable constant L. > 0 we have
A

folx) = (Az,z) + O(|a) > -5
on B /5, (0), and therefore fx = A/2 on B 5, (0) for all A € (0, o). Fix a cut-off

function 7 € C2°([0,00)) with 0 < 7 < 1 and
1 ifo<t<1/2,
=10 /
0 ift>1.

For any Ay > 1, we can find a smooth function £ € C'°°([0,00)) such that 1 < & < 2,
§ >0, sup;>0 &' (t) < Ao, and

Then we define
log(1/A) if [z < A,
ZHx) = og |z .
L1og(1/2) € (sl ) r(lal) it A < Jo] < 1.

It is easy to see that zy € C'*°(B1(0)) with supp(zx) C B1(0). Finally, we define for

() = 4 AR T2 € By 0),
0 ifz e M\ B s, (0).

Then, wy € C°°(M) with supp(wx) C B s5,.(0). Consider the continuous function
7 : [0, 00) — R defined by

n(s) = / Fretswr dfigy -
M

It follows from (2.1) that n(0) < 0. On the other hand, by the definition of w) and the fact
that fx > A/2on B 5, (0), we conclude that

n(s) :/ Iadpig, +/ fa(e® ™ —1) dpg,
M B x,1(0)

A
YRR .
M Bx,1(0)

This implies that 7(s) — 400 as s /* +oo. Hence, there exists some s(\) € (0, 400)
depending on A such that

0=mn(s) = [ fre*Ndpg,,
M

that is s(A\)wy € Xy, . In addition, we may find a constant ¢(\) such that
s(Mwx +¢(N) € X7, .

Now, we provide a more precise estimate of s(\). Since vol(M, go) = 1, supp(wy) C
B /5,(0), and dpy, = e*¥N dpug, we get that

0= fA€4S(A)W)\ dﬂgo
M

:/ f)\e4s()\)uu d/j/go+/ f)\ d,ugo
B x/1(0) M\B /x,.,(0)

2& / eAls(Nwr—en] dpg =l folloo-
B\/X/L(O)
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By (4.2), we have dp,,, = /14 O(rN)dz. Thus, for any ¢ € (0,1), we can find \. €
(0, Ag), independent of s, such that for any A € (0, A.)

/ eAlsNwr—en] dptg, > (min 6_4‘”)/ etsMwa 1 4 O(rN) dx
B x/1(0) M B x/.(0)
>(min e V(1 — 5)/ etsNwn g,
M B\/X/L(O)

It follows from the definition of z) and after substituting y = Lx/ V/\ that

3
)\/ 648()\)111)\ dr :)\_4 643()\)2)\(?/) dy
Byx,(0) L% JBi(0)
)\345()\)/ 7T2>\8745(A)
S dy="2—
Lt B,5/4(0) 2L

By combining all estimates above, we obtain
1
m(ﬁ}&neﬂw)(l — o) AN | fo oo

Solving the preceding inequality for s gives

log (4L4||fo|\oo maxy e’V
og(1/A) (1 —¢g)m
Next, following the proof of [Gall7, Lemma 3.6], we obtain that given any Ay > 1, there
exists A\° € (0, \g), independent of A, such that for any 0 < A < A° there holds

(Pgowx,w) < 47(1 +€)(Af + 1) log(1/A) + Co,

where C does not depend on neither A nor . Keep in mind that s(\)wy + ¢(\) € X}
with s(\) satisfying (4.3). Hence, we have

B <2(Py, (s(Nwx + ¢), s(Awx + ¢)
:25(>‘)2<P90w/\7w/\>
<3277 (1 +¢)(A2 + 1) log(1/)\) + O(1).

0< () <247 ) = 240(1/log(1/\)). (4.3)

This implies that

lim sup < 327%(1 + ) (A3 + 1).

A
Ao log(1/A)
Letting € N\, 0 and Ay “\, 1 gives the assertion. (]

Lemma 4.4. lhere hOldS
11111 lllf )\ < hIIl iIlf )\ ) < 6 1” .

Proof. Notice that the monotone function ) is differentiable almost everywhere. Then by
Lemma 4.2 we can easily get that
lif\n\i‘(r)lf()\oz)\) < 1if\n\'}(1)1f [ABAL
So, it remains to show that
lim inf [A3}| < 6472
iminf [AS)] < 647

Indeed, if we assume that for some 0 < A\, < A, some ¢y > 6472 and almost all
0 < A < )\, the absolutely continuous part of the differential of 3y satisfies |5| > co/A,
then for K = 3272 + ¢/2 > 6472 and any sufficiently small 0 < A < ), we have, by
Lebesgue’s theorem, that

A
By — B, >/ 18} dA
A
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>Klog(1/A) + (co — K)log(1/N) + ¢o log A
>Klog(1/A).
This contradicts the bound in Lemma 4.3. O
With help of this lemma, we can now obtain a bound for the total ()-curvatures of the

metric gy and the normalized metric gy. Recall that gy = e2%*gq with Q3, = [ and
ga = €22 go with Qg, = o fi.

Lemma 4.5. There holds

lim inf dp,, = liminf o |z, < 12872
im in /MIQ.%I g, =limin A IIngl g, ™

Proof. Notice that we can estimate
Qg = fo+ Al < —fo+A=—fr+2A (4.4)

Keep in mind that ) = vol(M, g») and that fM Ixdpg, = 0. Then by (2.3), Lemma 4.4,
and the fact that u, € X;X , we get that

liga inf /M |Qg, | dpg, <lim inf [ /M(—J‘})dugA +2Aax}

=2liminf(Aey) < 12872
AN0

Since |Qg, | = €**|Qg, | and dp,, = e*** djig, = e~ dpg, , we deduce that

/|ng|dﬂgx=/ |Q§A|d:u§)\7
M M

we thus complete the proof. (I

4.2. Concentration of curvature. In the following, we consider the prescribed ()-curvature
equation with an error term. To be precise, for a suitable sequence A\ “\, 0 and suitable
ay, > 0 we let functions wy, € X;A with corresponding metrics g, = €2k g solve

k

P, wi = agfr,e*™ + hyet (4.5)

with Qg, = oy fx, + hi. Then

/ Qg et dpg, = 0.
M
In view of Lemma 4.4, we further assume that «y, satisfies

limsup(Apay) < 6472 (4.6)

k—+oo
Moreover, we let functions hy on M be such that
HthLZ(M,gk) =&k — 0 (4.7)

as k — +o00. Denote

& :/ e dpig, (4.8)
M
Then the assumption (4.7) implies that
\hi| <er and  ||hy — hillpi s, < 26k 4.9)

With all these assumptions, we then have the same conclusion as Lemma 4.5. To see
this, we set

st = £ max{+s,0}
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for any s € R. Upon writing |Qy, | = —Qg, + 2Q;, , estimating Q. , and
integrating (4.5) we obtain, by Holder’s inequality and the assumptlon (4 7), that

lim sup/ Qg | dpty, =2 hm sup/ Qe dpug,

koo JM oo (4.10)

<2 hmsup (i + ([Pl L2(0r,)) < 12872
k—+oo

It is worth emphasizing that by allowing the “error term” hy, in the perturbed equation
(4.5), we will also be able to apply Theorems 4.7 and 4.8 below in the flow context, where
wy, = u(ty) for a solution u = wu(t) to (2.6) and hy = wu.(tx) for a sequence of times
ti, — +00. On the other hand, by choosing wy, = ux € X;Xk, satisfying (4.5) with hy, =0
for all k¥ € N, Theorems 2.1 and 2.3 will become the special cases of Theorems 4.7 and
4.8 below respectively.

It is worth noting that we are not interested in the existence of solutions to (4.5) in
X ;kk under the conditions (4.6) and (4.7). What we are interested in is the concentration
behavior of any sequence of solutions to (4.5) in X}*Ak, if exists. To be more precise, we
prove the following concentration result.

Lemma 4.6. Given (wy,) a sequence of solutions to (4.5) as above we have o, — +00 as
k — 400. Moreover, there exist a suitable positive integer I with I < 8 and finitely many

points x&? € M with 1 <1 < I such that, for any r > 0 and each 1 < i < I, there hold
fo(z) =0 (4.11)
and
s + 2
lklglilgof/r(zg)ng dug, > 8m”. (4.12)

Proof. Our proof consists of two parts.

PART 1. We prove (4.12) for 1 < i < I and a, — +00 as k — +o0.

By way of contradiction, we assume that for every x € M there exists some 7, > 0
such that

/ Q;, dp,, <87 =6, (4.13)
B, (I)

for some §, > 0 and for & large enough. Since the proof presented here is rather long, we
split it into several steps for clarity.

Step 1. In this step, from the contradiction assumption (4.13), we shall establish the key
estimate (4 22) below. Since M is compact, we can cover M by N balls B; = BT /2( xt)
with 1 < i < N. By the property (P2) of Green’s function, we conclude that G(:U y) >0
for any € M ,y € B, (x) with r,, suitably small. So, in the following, we choose the
radius r,: small enough such that G(x,y) > 0 for any x,y € B; = B, , (x%). Let

= / Qe g, -
M

Then the fact that [, Qg e*"* dug, = 0 implies that [, Q e*"* dug, = —pu. More-
over, by (4.10) we have

0 < pp < 12877 +0(1).

Now we let w,gi) solve the equations

P uwt) = QF el (4.14)
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on M. Since kerP,, = {constants} and P, wy = Qg, e***, we can decompose wy, as the
following

we = wl "+l + dy, (4.15)
where dj, is some constant. Integrating (4.15) with respect to the metric gy yields

dp = Wy — w](:r) w](;). (4.16)
Recall that M is covered by all balls B; with 1 < ¢ < N. Hence, for each x € M we can

find some 1 < ¢ < N such that x € B;. By applymg the formula (3.3) to the equations
(4.14) we obtain

wi () = (i)+/ G(z,y)(QE e** F ) (y) dpig, ()

*w,(f) + /B G(z,y)Q% dug, () F /IV [G(x,y)dugg(y) (4.17)

i

G = .
+ /M\Ei (z,y)Q5, di,, (y)

It follows from the property (P1) of Green’s function and (4.10) that there exists positive
constants C; independent of & such that

‘Mk G(z,y) dpug, (y)| + ‘ /M\B (2,1)Q;. dugk(y)‘ <G (4.18)

If we set
c*:maX{CizlgigN},

then the positivity of G on each Ez and (4.17) imply that for any = € M, we have

w,(:r)(ac) > wl(j) — Cy,

(4.19)
w,(;)(ac) < wkf) + c.
Now, we define
VU = Wk — W,
o =l — ™ e, (4.20)
e ):w,g ) w,(c_)—c*.

Then the relations in (4.19) imply that
v,(j) >0=> U,(;).
Furthermore, it follows from (4.15) and (4.16) that
W — WE = w,(f) + w,(;) — ’LU;(:F) - 'LU}(;)’
which then yields
Vg = v,(j) + v,(;).
In view of (4.13), we may choose some real number sg > 4 so that

S0 /g Q. dp,, <327 4.21)
forany 1 < i < N. By using (4.17) and (4.18), we can bound
o = e =of? —uf <ot [ Gn)Q; dny, )
which then gives Z

exp [soviT] < 2% exp [80 /~ G(z,y)Qf, dug, (y)}
B;



BUBBLING OF THE PRESCRIBED Q-CURVATURE EQUATION 17

+ -
. X5, ()
< e?socs €Xp {50/ HQ;;XEI Ll(M,gk)|G(zay)| ¥ gli dﬂgk (y)}
M HQQkXBi LY(M,gk)
+
Xz, ()
< 62506*/ exp {SOHQ;;XEI- Ll(M,gk)|G(1';y)| - g’i d gk(y),
M ||Q9kXBi|‘L1(I\/Lgk)

thanks to the ‘weighted’ Jensen inequality; see [BM91, page 1227]. By integrating the
inequality above and using Fubini’s theorem, we obtain

)
[ et du@ <o [ ([ e [solgx,
Bi M Bi

5 X5 ()

Q5 x5, 21 (0,01

< €200e sup/ exp [SollQ;xgi|\L1<M,gk>|G(””’y)|} dago (@)
yeM Jm

200 |G @,y dig, (@)

dpg, (y)

By the property (P2), we know that |G(z,y)| < (1/(872))log(1/d(x,y)) + ¢ for any
x # y, which implies that

S0 1
s0ll Qg X7, Iz (11,90 |G (@, y)| < 8?||Q;X§i||Ll(M,gk) log e + 87265 s0

for any x # y. From this we can estimate

[ ex [l Q51 s ar. (6] i o)

< 68772%80/ (d(:c,y))i(so/gﬂ)”%’“xéi letcar0 dpig, ().
M

The last integral in the preceding inequality is uniformly bounded because

(s0/87)1Qg, x5, | L1 (3r,90) < 4,
thanks to (4.21). So we have shown that

(+)
/ esovkJr d‘ugk < 400
B;
for 1 <4 < N. Since M is covered by finitely many B;’s, we conclude that
+)
/ e’k dp,, < +oc. (4.22)
M
This completes the first step.

Step 2. In this step, we claim from the key estimate (4.22) that v,(;r), defined in (4.20), is
uniformly bounded. To see this, we let p = 2s9/(so +4). Then it follows from s > 4 that

1<p<?2, 4p< sp. (4.23)
With this real number p, Minkowski’s inequality, and (4.14), we can estimate
(+) _ (+)
[P o3 HLP(M,gU) = |[Pgywy HLP(IV[,go)

= [|@, M F ||LP(]\/I,g0)

< Ozk)\kH64 + Hhk€4Wk

k
L7 (M, g0 .90 k
v H ( ) HLP(IV[g)+‘u

=T+ 1T+ 1287 + 0(1)k 400

Estimate of /: By Jensen’s inequality and the fact w, € X3 , we know that
k

1
W :/ wy dftg, < Zlog (/ etwr d,ugo) =0.
M M
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Hence, wr = v + Wk < v < v,(j). This together with the fact that a; A\ < 6472 +
0(1)k 400, (4.22) , (4.23), and Holder’s inequality implies that

4/50

I< 657T2He4”k L1 (Mogo)”

Do gy < 657"

Thus I = O(1)1 74 oo-
Estimate of /7: To estimate this term, we make use of Holder’s inequality and the facts

that 1 < p < 2and sop = 4p/(2 — p) to get

1/p
II = ||hke4wkHLP(M,go) = (/ |hk|p62pwk62pwk d,ugo)
M

1/p—1/2
< el L2 (a1 </ esor d.“go) .
M

By (4.22) and (4.7), we deduce that
IT = o(1)k 74oo-

Combining the estimates of [ and /1 gives

/ |Pgo“1(c+)|p dpig, < +00.
M
In addition, it follows from (4.22) that

(+) q
Uy €L (Ma gO)
(+) is bounded in
(+)

for any ¢ > 1. Thus, by standard elliptic theory, we have shown that v,

W*P(M, go) for some p > 1. Again by Sobolev’s embedding, we conclude that v
bounded in C%*(M, go) for some a € [0,4 — 4/p]. The claim is proved.

Step 3. In this step, we show that the sequence («ay) is unbounded. Indeed, suppose that
() is bounded, namely, oy = O(1)g—+00. Mimicking the argument used in (4.10) to
get

/ Q+ 4wy, d,Ugo ap AL + ||hk||L2(]M ar) = 0(1)k/‘+oo,

which tells us that (4.13) holds at any point in M. From this, we repeat the arguments in
(+)

Steps 1 and 2 to realize that (v, ") is uniformly bounded. It is now possible to bound wy,
uniformly from above as follows
Wi, = v + Wy < v <v(+) <C.
In view of the estimate se® > —1 for s < 0 we find that
arpfr.etrw, < C and  |e*Wrwy| < C.
uniformly in M. But then by multiplying (4.5) with wj, we obtain the bound

B, < 2(Pgowi, w)

2/ ag fre et Fwy dpig, +2/ hietkwy, dpeg,
M M

N

<C+ 2||hk||L2(]M,gk)||62wkwk||L2(M790) <G,

provided k is large enough, which contradicts Lemma 4.1. Thus, («y) is unbounded as
claimed.

Step 4. Now, we are in position to obtain a contradiction and show that there are finitely

many points z( ) € M with 1 < i < I such that (4.12) holds. Keep in mind that o, * 400
as k — +oo. Depending on the size of wy, there are two possible cases as follows.
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Case 1. Suppose that Wi — —oo as k — +o0o. By the uniform boundedness of v,(:r)
established before, we have

Wg = U + Wi < U;(j) +wy < C + wyg.
Consequently, w; — —oo uniformly on M as k — +o0o. This contradicts the fact that
Jos etk dpg, = 1.

Case 2. Suppose that wy, > —C for some positive constant C'. In view of (4.10), we choose
~ = 1/17 so that

7/ Qg | dprg, < 87
M

holds for large k. This estimate plays a similar role as that of (4.13). Therefore, we can
repeat the previous argument to get that

*51'771;(;

e < +00 (4.24)

)
s (ar.g0)

for some s; > 4. This together with (4.5) and vol(M, go) = 1 implies that

271 2vk—2vv(7) d
(oklfa])” e Hgo
M

1/2 ) 1/2
<( [ anlnte™ g, ) ([ e ap, )
M M
— 2wy, 4wy, 1/2 7471;(7) 1/2
=€ k( O‘k|f/\k|e kdﬂgo) ( € k d,“go)
M M
o " 1/2 ) 1/2
<o ([ (Qul+ al)e™ dg ) ([ e )
M M

—om, 1/2 4 1/2
se ( Q] dpeg, +HthL2(M,gk)) ( e ot dﬂgo) :
M M
This, the lower bound of wy, (4.7), (4.10), and (4.24) imply that

271 o)
/ (elfa])™ 7% " dpg, < C (4.25)
M

for some constant C' > (. For any integer m > 1, thanks to (4.24) and (4.25), we do
iteration to get that

2™ 52-m (=)
/(aklfkkl) e? VT2 dpg,
M

2t 237m'uk—2w'u(7) 27! —4'yv(7) 2
<( [ (alsn)® e g ) ([ e du, )
M M

217711,

1 (-
g gc(/ (ak|fAk|)2 62"’16727"% )dﬂgo) QC
M

—1

(4.26)
for some new constant C' > 0. By choosing m > 1 large enough such that 21 =™ < ~ and
fixing it, we have

22y — 20l = 2[20 ol 4 (21— )l T)] = 22l > 0,
This implies that

—m 92-m (=) —m
1iminf/ | )? N ! dpg, = / |fol? " dpg, > 0.
k——+o0 M M
Substituting this estimate into (4.26) gives
—m —m -1
liminfa? = < C(/ [fol> " dpg, ) < 00,
M

k—-+oo
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which contradicts the fact that o, — +o00 as k — 400 established in Step 3. This
contradiction implies that there exists at least one point x € M such that (4.12) holds.
Moreover, the bound of total ()-curvature (4.10) shows that there can only have finitely
many points in M such that (4.12) holds. Let us denote by I the number of such points and

for clarity these points will be denoted by xéo) with 1 < ¢ < I. This completes PART 1.
PART 2. Proof of fo(2¢ ) =0for1 <i < ITandI <8.

Suppose that, for some i € {1,2, ..., I}, we have fo(:coo)) < 0. Then, on one hand, for
sufficiently small ¢ > 0, we may find some r > 0 such that

I < —¢€/2
on B,(z',) for k sufficiently large. On the other hand, again we make use of the estimate
QF. < (arfa,)™ + |he| < |hil to get

Jr
[t < [ et gt [ g, < el
Br(zl,) Br(zi,) M

thanks to Holder’s inequality and vol(M, g;,) = 1. Thus fB Q Ldpg, —0ask —
400, which contradicts (4.12). Thus, (4.11) holds. Finally, the estimate I < 8 follows
from the inequality

1imsup/ QJr dwr g0 < 647>
k—+oo

in (4.10) and the inequality (4.12). O

An immediate consequence of Lemma 4.6 is the following

872 — 0(1)k 1100 < Ak < 6472 + 0(1)k 400 4.27)

4.3. Blow-up analysis. In this subsection, we derive the blow-up behavior for the func-
tions wy, in (4.5), namely

Pgowk = ng e4wk = (akf)\k + hk)e4wk
under the following two hypotheses

lim sup(Agay) < 647>

k—+o00
and
kll2(ar,gy) = 01k, 400
We also characterize the shape of the associated conformal metrics g, = e?“*gg as k —
+00.

First we consider the non-degenerate case.

4.3.1. Non-degenerate case.

Theorem 4.7. Assume that the Paneitz operator P g is positive with kernel consisting of
constant functions. Let fo < 0 be a smooth, non-constant function with maxys fo = 0
having only non- degenerate maximum points. Then for wy, as in (4 5) above and suitable
IGNT \Osc %:cé?eszthfo(zoo))f01 < I, as k — +oo the
following hold

(i) wr — —oo locally uniformly on Mo, = M\{xoo, <i< T}

(@) (Z)

(i) In normal coordinates arozmdx((,o), setz,’ =exp RO (xk ) and wy, = wy, Oexp_(i)-
oo

Then for each 1 < i < I, either
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(a) limsupy,_,, o r,(:)/\/)\k = 0and
Wi (z) = @(zg) + r](:)z)—l—log r,(:) — Weo(2)

strongly in Hﬁ)c(R‘l), where Wso, up to a translation and a scaling, is given

by
Woo(2) = log (47\/6)
44/6 + |2|2
and it induces a spherical metric
oo = €' gRs
of Q-curvature

Ry, =1

onRY*and1 < I <4, or
(b) limsupy,_,, r,(j)/m > 0 and
Wy (2) = (2" +772) +log(rl?) = @ao(2)
strongly in H\ (R%), where Woo, up to a translation and a scaling, solves
A2l (2) = (1 + %Hessf0 () [z, zDe‘m“.
In addition, the metric
oo = €' gra

on R* has finite volume and finite total Q-curvature

1 _
Qg (2) = 1+ SHessy, () [z, 2]
and1 <1 <8&.

Proof. Our proof consists of two parts.

PART 1. We establish Part (i) of the theorem. Recall that
My = M\{z® :1<i<T}

and let x € M, be arbitrary. Then it follows from Lemma 4.6 that there exists a radius
ry > 0 perhaps depending on x such that for large k£ we have

/ Q:{k dpg, < 872,
By, (%)

Following the same notations defined in (4.20), we split
Vg = v,(j) + v,(;).

Also, we let v = 1/17. Since the preceding estimate serves the same role as that of (4.13)
in the proof of Lemma 4.6, by repeating a similar argument used in the proof of Lemma
4.6 to get (4.22), we find that

(+)

Jes”) ©) <c

- [le™

Lz (Br, (z)) Lz (Br, (z))

for some s, > 4, which could also depend on .

Now, given any open subset Q C Q C M, our aim in this part is to show that wy, —
—oo uniformly in . To this purpose, we first cover 2 by finitely many balls B, /5(z;),
1 < j < Ny, in such a way that for each ball B; := B, (z;) with 1 < j < Ny we still
have

/ Q;;k dpg, < 872,
B;
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Set s = minj <N, Sz;- Then it follows from the uniform boundedness of (U,Ef)) in M

that -
Lo@) S Z e’ |

1<j<No

C.

e

Lo(B) S

We may assume that €2 is connected and large enough so that fQ fodpg, < 0. If there
holds wy, > —C' > —o0, then we may argue as in Case 2 of Step 4 in PART 1 of the proof
of Lemma 4.6 to obtain
—m —m -1
liminfaf = < C(/ | fol? dugo) < +o0,
which contradicts the fact that o, — +00 as k — +o00o. Hence, we must have
W — —00
as k — +4-o00. Then it follows from the uniform boundedness of (v,(j)) that
W = Vg + Wi < v,(j) + W — —o0

as k — +oo. This finishes the proof of Part (i).

PART 2. Starting from now to the rest of the proof, we establish Part (ii) of the theorem,
namely, the blow-up behavior near each point x&) with 1 < ¢ < I. Since the proof of
this part is rather long, we also divide it into several claims. Before doing so, we devote
ourselves to preliminaries necessary for the blow-up analysis below. For simplicity, we
denote o = ac((fo) Let i, be the injectivity radius of M. Clearly ¢, > 0 since M is compact
and the restriction of exp, to {X € T,,M : [[X||4, < iy} induces a diffeomorphism
onto B, (xg). Assimilating (T, M, go(o)) to (R™, dz?) isometrically, one can then con-
sider exp,,, as a local chart around the point 29. This allows us to select 5y € (0,74/2)

sufficiently small such that for all z € M and all y, z € R*, if |y| < dp and |z| < &g, then
y—=z

% < dg(exp, (), exp,(2)) < 2ly — z; (4.28)
see [DER04, page 43]. Let § < min{1, 8} and denote by B;(0) the open ball {z € R* :
|z| < &} in R%. As always, we often use either a hat or a tilde to denote quantities in R*.
We now consider the exponential map

exp,, ég(()) - M
with exp, (0) = xo. We can also assume that § > 0 is chosen sufficiently small in order to

guarantee that the only maxima of fj in expzo(f?g(o)) is 2. Since exp,, is an isometric
diffeomorphism onto B;, (z0), we deduce that

exp,, (B,(0)) = By (x0)) (4.29)
whenever r < g, while by (4.28) it is not hard to see that
exp,, (By(2)) C Bay(exp,, (2)) (4.30)
whenever |z| + r < dp and that
By(exp, (2)) C exp,, (Bar(2)) (4.31)
whenever |z| + 7 < §p. Combining (4.30) and (4.31) gives
By ja(expy, (4)) C expy, (Br(y)) C Bar(expy,) (), (4.32)

which is often used throughout the paper. Given a function h on M we denote
h=ho eXDPy,;
we also consider the pull-back metric

go = eXp;ko go-
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Since xg is a non-degenerate maxima of fq, up to an action of the orthogonal group, we
may assume that f( has the following expansion

Z 22+ 0(2%), (4.33)
i—1
for any z = (2%,...,2%) € B(;(O) with 0 < a; < as < a3z < aq. If we choose § even

smaller, then we can further assume that

forall z € Eg(()). From now on let us consider large & in such a way that
)\k/al < (54/24.

We also set

Ay ={z € M : apfx, (x) + by, = 0} N Bs (o),
where 7y, is defined by (4.8). Clearly,

{x cM: Oékf)\k + hk } {.T e M : X\, + % —fo(l‘)}

Combining (4.9) and (4.27) gives A + |hk|/ak < (3/2)A. From this, the estimate
—fo(z) = (a1/2)|2|? in Bs(0), and (4.29) we conclude that

esz (Ak) C BW(O) (4.34)

Claim 1. There exists a constant pg > 0 such that for each p € (0, pg), there exists a
sequence of positive numbers (7 ) and a sequence of points (xy ), C Bs(zo) satisfying

0<r, < \/3)\k/a1,

/ et dpug, = p,
Br, (k)

xp — xo and  wi(xg) — +00, as k — oo,

/ ehwr dpg, < p, forall y € B m(w4).
By, (v)

Proof of Claim 1. 1t follows from Lemma 4.6 and Q3 < (ay fa, + hy,)* + |hy, — hg| that

(ke + ha) et dug, Jr/ e — hyele* dpsg,

872 — 0(1)k 1100 < /
B (xo)

B (o)

Making use of (4.9) we further obtain
812 — 0(1)k oo < / (e fx, +Pr) T et dpgy +0(1)k oo
B (zo)
On the other hand, by (4.34), (4.9), and (4.27) we can estimate
/ (akak =+ Ek)+e4w}€ d:ugo = / (O‘kak + Ek)e4w}€ dﬂgo
Bs(zo) Ak

- / (ke f, + )™ dpg,
expa, (Ax)

< / (ozk)\k + o(l)k/uroo)e‘m’“ dug,
€XPa (Ar)
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< (647T2 + o(l)k/+oo) / edwn dptg, -
B foxgzar (®0)
Putting all these estimates together, we eventually get
82 — o(1)k 4oo < (647r2 + 0(1)k/uroo) / et dptg, -
Byax7ar (#0)
Hence, we have just shown that
7
/ etk dpig, = T (4.36)
B, /axy7ar (®0)

Now, if we let
7(s) = sup / etr g,
Bs(x)

z€Bs(x0)
then 7(0) = 0 and by (4.36) we know that

(/3far) > %

By setting pg = 7/65 and by the continuity of 7, we thus have for each p € (0, py), there
exists some r, € (0, 1/3\;/a1) such that 7(r;) = p. Furthermore, the compactness of
Bgs(xp) allows us to choose xj, € Bs(xo) such that

/ etwr dug, = sup / ehwr dpeg,
BTk (k) z€Bs(x0) BTk (z)

for each k € N. This finishes the proof of (4.35a) and (4.35b).

Next, let us show (4.35¢). To see this, we assume by contradiction that wy (zx) < Cy,
for some constant C,, > 0. On one hand, by the estimate (o fx, + ﬁk)Jr > (o fa, +
hi) T — [hg — Ek|, Lemma 4.6, and (4.9), we get

lim inf/ (ozk;f)\,C + Ek)+e4wk dpg,
B (o)

k——+oo

> timint ([ ot 4 m) e dug, = Tl )
k— o0 Bs(x0)
> 872,
On the other hand, we have, by (4.27) and (4.9), that
lim inf/ (o fa, + ﬁk)+e4“’k dpg, = lim inf/ (o fa, + Ek)e‘lw’“ dftg,
Bs(z0) Ay

k—+oo k—+oo

< liminf <e4Cwo¢k)\k/ dugo)

k—+4o00 N
< O(0Y).
We thus obtain a contradiction if we choose ¢ small at the beginning. Thus, we have
already established the unboundedness of wy,(xy). To see why z, — x¢ as k — +00, we
assume by contradiction that x;, — x. # xg. Clearly, x. € M because (x) C Bs(xo).

By the result in Part (i) we know that wy(x,) — —oo which contradicts the fact that
wg () — +00.

Finally, keep in mind that 7, < /3\;/a1 < (6/2)2. This together with the proved fact
(4.35¢) above immediately implies that B /- (wx) C Bs(zo). Hence from our choice of p

we have
/ e dpug, < p
By, (y)
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forally € B m(zk) Thus (4.35d) is proved and we complete the proof of Claim 1. [
Set zp, = exp;o1 (x3). With the choice of 5 and z; above, we consider in R* the
translation—dilation
Ip:z0= 2z +1ri2.
Clearly, Fk(ﬁkﬁ) = §5(0), where, given r > 0, the set ﬁkm is defined as follows
Dy, i={z € R*: |z + 12| < r}.

Clearly we may rewrite Bkm as ﬁk.,r = Er/m (—zx /7). Recall that r, — 0 and 2z, — 0
as k — 400 by Claim 1. This implies that zj, /ry = o(r/7k)k 7+c0. From this we deduce
that, for each r > 0 fixed, the set Bk,r exhausts R* as & — +o00. Next, we consider the
scaled metrics

gk =15, °T5do
on ﬁkr Also, we define
Wy = wy o Iy + log rg. (4.37)
Making use of (4.32) gives
Bry2(0) C (expy, o)™ (Bpry (21)) C Bar(0). (4.38)

In view of the conformally covariant property of P, there holds Pg, = T%Pr‘zgo. Then by
a direct computation, the function @y, satisfies

P5, Wk (2) = 1 Pryg, (0k(Tx(2)))
= (arfr, (Tk(2)) + hy 0 Ty ) el Tr(z)Flogrs] (4.39)
= fu(2)e' ™,
where
fr = arfa, oLy + hy o Ty
Using the exponential map, we can rewrite the identity in (4.35b) as follows

p= / e dp, (4.40)
(expy, o) =1 (Bry (1))

To rewrite the inequality in (4.35d), first we make use of (4.32) to get
By, p2(expz,) () C expyy (Br, (y))-
Since I';! : 2+ (2 — z3) /rk, we deduce that
-1
5 €Xp,, (y) — 2k
By (S W) 5

") € exp, oTk) ™ (B (1)

Therefore, the last inequality in (4.35) gives

440y, <
/E (eXDgol(y)—zk) e dﬂgk P
e\

forall y € B /- (wx). By (4.38), notice that
(exp,, oTk) (B1/ 2 m)(0)) = exp,, (B /2(21)) C B (k).
Hence, substituting y = exp,, (I'x(2)) into the inequality above yields

4w
/A e dug, < p 4.41)
By2(z)

for any 2z € El/(gﬁ) (0). Since the set Bl/(gﬁ)(o) exhausts R* as k — 400, we can
freely use (4.41) for arbitrary z in any fixed ball provided k is suitably large. In the next
step, we provide a more precise estimate on d(xy, x¢) in terms of \.
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Claim 2. There exists some constant C' > 0 such that
d(xk, :Co) < C\/ >\k (442)
for all k large.

Proof of Claim 2. If this were not true, then we would have d(zx, z9)/V/ A — +0o0 as
k — 4o00. From the expansion of fy in (4.33), the bound for ax A in (4.27), and the
inequality r7 /A < 3/a; we obtain for any fixed R > 2 with [z| < R

arl FoTa(2)] = (arh) it (G + ez

_qaq /1
> () AT 5 (51l = r2lel?)

This together with the fact that |zj|/v/Ax — +00 as k& — +oo implies that
ar|fo(Tk(2)| = +oo

uniformly in the ball B (0). Thus for K = 6572/p there holds ay|fo(x(2))| = K for

all z € By (0) provided k is large enough. Note that | fo| = Ay — fx,- From this we may
write

k| fo(Tk(2)| = ard — ak fr, (Tk(2)).
Then by (4.35b), R > 2, (4.38), and (4.9), for k large enough, we have the estimate

657 < K M dpg,
Bryy, /2(@k)

=K etk dug,
(expyq oT'%) ~ 1 (Brry, /2(%k))

<[ ol d
Br(0)

- /A (OékAk - ak,]?,\k (Fk(z)))e4@k dﬂﬁk
Br(0)

< / (ozk)\k - ozkj?)\k (Fk(z)))e‘m’c dug,
(expg, oTk) ~1(B2rry, (k)

= / (Ozk)\k — Ozkf)\k)€4wk d/LgU
Bapry, (zk)

N

/ (ak)\k - (akf)\k + hk))e4Wk dlu’go +O(1)

M

apAL + 0(1)

647% 4 o(1),

which is impossible for £ sufficiently large. This proves (4.42). (]

<
<

Using the expansion of fo in (4.33) we may write oy, f)\k ol'y as
agfr (Tr(2)) = arhi + o fo(Ti(2))
= oA [\g fo(Tr(2)) + 1]
4 .
z, Tk i)? (4.43)
- il V=T
ol n ) |

= ap M\ i=1
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It follows from (4.35) and (4.42) that
"k < V/3/a1 and Z—k| <C.

\% Ak VA
Plugging these into (4.43) and using (4.27) we can find a positive constant C'r such that
ak|fa, (Tk(2)| < Cr (4.44)

for any z € Br(0).

Claim 3. Let @y, be given in (4.37). Then wy, is bounded in W/li’cso (R*) for some s¢ > 1.

Thus, there exists a function @, such that @), — Wa strongly in C.% (R*Y) N HZ (R*)
forany 0 < o < 1 — 1/s9. Moreover, there holds
/ e dz < 1. (4.45)
R4

Proof of Claim 3: We borrow the method used in the proof of [Mal06, Proposition 3.4].
Let R > 8 be arbitrary but fixed. Then we define a smooth cut-off function nr with

1 ifz € Bpys(0),
UR(Z): . 4 fan
0 ifz€R*\ Bar(0).

Set
ap = ,\; ﬁ)\k d,LLA
|Br(0)] /Br(0) -
P = nrwWr, + (1 — Nr)ax, and
(/I;k = q)k — .
Then

(I)k: @k 0n§R/2(0)7
af on R4 \ BQR(O).

In particular, ®, =0inR? \ B r(0). Hence, ;. has a uniform compact support. Observe
that &, = npr (@k — ay,). From this and the equation satisfied by @y, in (4.39), it is not hard
to see that &, satisfies the following equation
P5, @1, = nrPg, @k + Li (T — ar) = or, (4.46)
where
o = Nrfre'® + Ly (@ — ).
Note that in (4.46), (L) are linear operators containing derivatives of order 0, 1,2 and

3 with uniformly bounded and smooth coefficients. Therefore, by Lemma 3.1 and some
scaling argument one can easily find that

/A (V2@ |® + [V?@r|* + |Ve|®) dpg, < Cr (4.47)
BQR(O)

forany k£ € N and any s € [1,4/3). Since ®, has compact support and &5, = @), — ay, in
Bpy2(0), we can apply L*-Poincaré’s inequality to get

/A |4]* dpig, < Cr (4.48)
Bry2(0)
for any k € N and any s € [1,4/3). It follows from (4.47) and (4.48) that

/A |Li(@r — ar)|” dug, < Cr (4.49)
Bry2(0)
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forany k € N and any s € [1,4/3). We now use (4.49) together with Holder’s inequality
to conclude, for any z € Bp/4(0) and 7 > 0 sufficiently small, that

/A }Lk (’L/l}k - ak) } dM?]\k < O(T) (450)
B, (z)

On the other hand, it follows from the boundedness of || || £2(as,g,) in (4.7), the bound-
edness of ay, f, o I'y, in (4.44), and the estimate of f 4w dﬂgk in (4.41) that

/ ‘fkezmk ‘ dug, < / ak’f)\k © Fk‘é@k dug, +/
By (2) Br(2) Br(

r(Z

40,
< Cr /gmz) "% dpig, [Pkl L2 s g0

< Crp+er < 2CRp

I 0Tt dg

4.51)
for any z € Br/4(0), 7 > 0 small, and k large. Hence, by choosing » > 0 and p > 0
suitably small, we obtain from (4.50) and (4.51) the following estimate

/A x| dpg, < 877
B.(2)

forall z € ER/4(0). Then, it follows from the equation solved by Py in (4.46), Remark
3.3 and a finite covering argument that there exists some s; > 1 such that

431:15
/A e Fdpg, < C, (4.52)
Br/4(0)

where C' > 0 is a fixed constant.

Next, we show that a; is bounded. To see this, it follows from Jensen’s inequality,
(4.30) and the fact that [, e*** dpg, = 1 that

1

Al = —=< R ﬁ)\k d,LLA

|Br(0)| /Br(0) o
1 1

< - log ( — et Ay )
4 7 NBg(0)] JBr) o
1 1

< = log (Ai edor 4y ) < Op.
4"\ BR(0)] JBane, (o) ”

To bound ay, from below, we recall from (4.40) the following

/ e4@k dﬂﬁk =/
(€xPyq oTk) =1 (Bry (w))

Making use of (4.38) gives
(expy, oT) ™ (B (1)) C Ba(0).

Consequently, for k large and because R/4 > 2, we arrive at

/A e4wk d,LL/g\k Zp
Bry4(0)

This together with the fact that @5, = @y, in B r/4(0), we obtain

P < /A e4q>k d/j/?fk - e4ak /,\ e4¢’k dugka
Bry4(0) Bry4(0)

which implies by (4.52) that a;, > —C'r and hence we find

|ak| g CR.
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Using this fact, we have by (4.48) and Minkowski’s inequality that
/A |@x|" dpg, < Cr (4.53)
Bry2(0)
forall s € [1,4/3) and by (4.52) that
/A e Pk dps < Ch. (4.54)
Br/4(0)

Now, we take 1 < sy < min{sy,2} and let s9 = 2s2/(1 + s2). Then 1 < 55 <
min{4/3,s1} and sy = s9/(2 — sp). Using the boundedness of ay fx, o 'y in (4.44),
Holder’s inequality, the estimate of [|hx || £2(as,g,) in (4.7), and (4.54) we can bound

Lo R g <0 [ o on et
Br,4(0) Br/4(0)

T C |hk ° Fk|506250wk 6250wk d//[/?]‘k
Bry4(0)

N SU/Sl
<CR</A s dﬂ§k>
Br/4(0)

- N 50/2
+ C</A |y o Ty |?e?®" dug, >
Bry4(0)

N So/(252)
()
Br/4(0)

<0R+CR|hk|L2(M,gk)</A 6451@1@ dﬂﬁk

) 5051/(255)
Br/4(0)

<Ck.
(4.55)

Plugging (4.55) into (4.39) gives
/A [Pg, wk|* dug, < Cr,
Bpr/4(0)

which together with (4.53) implies that @y, is bounded in Wfé’cs” (R*). In particular, Sobolev
embedding theorem implies that @0, — @ strongly in C*(R*) N H2 _(R*) with 0 <

loc loc

a < 1—1/sp. It remains to establish (4.45). Indeed, by Fatou’s lemma, (4.38) and the fact
that [, e* dug, = 1 we obtain

/ el < liminf / ek dpg,
Br(0) k=400 JBr(0)

< 1iminf/ etk dpg, < 1.
Baprry, (zk)

k—+oo

Passing to the limit R — +o0o0 we find

/ el 4 < 1.
R4

We thus finish the proof of Claim 3. O

Claim 4. The assertions in Theorem 4.7(ii) hold true.
Proof of Claim 4. Since 0 < r,/v/ i < \/3/a1 by (4.35), we have two possibilities.

Case 1. There holds limsup,,_, . x/+v/Ax = 0. In this scenario, recall that the estimate
d(zp,x0) = O(VAk)k too in (4.42) implies that |zx| = O(VAk)k 400 if k is large
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enough. This together with (4.27) and (4.43) implies that there exists some 79 < 6472
such that, up to a subsequence,

lim oy fr, (Ck(2)) =70 (4.56)

k—+oo

uniformly in any fixed ball B r(0). Next we derive the equation for the limit function @Ws,
in Claim 3. We multiply by a smooth function ¢ with compact support on the both sides
of equation (4.39) and then do integrating by parts to obtain

(Pr i) = [

\ ozkf)\k o er47f”€ga dug, + / \ h o erzmﬁk@ dug, -
R R

By the fact that g, — (dz)? in C32 (R*) and the estimate of || x| L2(ar,g, ) in (4.7) we send
k to infinity in the equality above to conclude that the function @, solves the equation

A%y, = roet®ee (4.57)

in R*.
Since in this case we can obtain a very precise form for wo, from (4.57), we need more
work by showing that 7o > 0. Indeed, suppose that this is not true, then we are led to two

cases: g = 0 orrg < 0. When rg = 0, it follows from (4.57) and (4.45) that the function
Weo solves

A2l =0

with the finite energy condition
AW
/ e dz < 4o00.
R4

Now it follows from [Mar09, Theorem 3] that @, is a polynomial of order exactly two,
which is also bounded in R*. Consequently, @ is at most linear. Therefore, we can make
use of [ARS06, Theorem 2.4] to conclude that

A, Wse =co >0

everywhere in R*. Using this fact, on one hand, the strong convergence Ag, Wy, — A, Woo
in L2 _(R?) implies, for arbitrary but fixed R > 0, that

loc
4
|A, Woo| dz = %0772(5) .

k—+o00 Bry2(0) Bry2(0)

However, on the other hand, we can estimate

/A |A§kﬁ}\k| dl'l’gk
Bpr/2(0)

= T;Q /A |A*§0’[Ek| dﬂﬁo
Bryy, (21)

< T];2 / |A90wk| dﬂgo
Bagry (T

-t [ [ 1806k 0) + e ™9 i 0) i, 0)
Bagry, (zk) J M

<Cry? /M oS () + P @) /B Az, )™ djtgn () djigo ()

2Ry, (Tk)

< CR2/ ‘Ozkf,\k + hk’€4w" dpeg,
M

= O(R?).
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Putting these facts together, we eventually obtain
‘2 (E) ! = 2 4
27 (3 O(R?), (4.58)
which is impossible if we let R sufficiently large. We now rule out the case 7y < 0. Indeed,
in this scenario, we apply [Mar08, Theorem 2] to (4.57) to get
lim A’l/l)\oo (tf) = C1 75 0

t—+oo

uniformly in ¢ € K where K C S? is any compact set with positive Hausdorff measure.
Then, for % large enough, we have the following estimates similar to the ones leading to
(4.58)

RN\4 N
C’(—) g/ |A, Weo| dz
2 Br/2(0)N(RTK)
< lim |A’\’L/U\k|d,u'\
k—4o00 ER/2(O) gk 9k
= O(R?),

which, again, is a contradiction if R is sufficiently large. Hence, we have proved that
ro > 0. Since e*®>~ ¢ L'(R?) by (4.45), the well-known classification theorem in [Lin98]
then implies that either there exists a constant ¢y > 0 such that

7Azwoo = Co

everywhere in R? or there exist some 119 > 0 and 2o € R* such that

N 210 1. rg
)=o) Ln
oo (2) = log 1+ pdlz — 20]? 1%
We can rule out the first alternative in the same way as (4.58). Hence, the second alternative
must occur. Now, recall by Claim 3 that we have the strong convergence W, — Wxo in
CP%(R*) N HE,(R*) for some 0 < a < 1. This together with the decomposition
P, (@ — @oo) + (Pg, — A2) oo =hy, o Tpe™ 4 (ag f, 0 Ty — 10)e®*

+ To(e4ﬂ3k . 6471300),

(4.59)

(4.7) and (4.56) implies that Wy, — W strongly in H;l (R?).

Up to this point, we are ready to estimate the number of blow-up points. Recall that we
have already had I < 8, however, in the present case, we aim to show that indeed I < 4.
Clearly at each blow-up point, say zo as before with the same notations used up to this
position for simplicity, from the explicit formula (4.59) we can compute

4 2
= 6 2 16

/ €4w<>¢ dz = _/ (%) dz = ™ -
R4 ro Jre \ 1+ pglz — 2ol o

Since e®* — e strongly in L, (R*) as k — +oc and 7y < 6472, we have for R and
k sufficiently large

L[ e / .
— < ek dpus < et dpg, -
64 Br(0) o Baprry, (z1) ’

Since the number of blow-up points is finite, if we choose & even larger, we deduce that the
sets Bapy, (1) C Bs(xg) and they are non-overlap at different blow-up points. Keep in
my that | M e*™r dyy, = 1. From this we deduce that the number of blow-up points must
less than or equal to 4, namely I < 4.

Finally, we notice that, up to a translation and a scaling, W, has the form

_ V6
Weo (2) = log <4\/§7+6|z|2)
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Indeed, it suffices to substituting (4.59) into the expression

_ _ 1
Wi (2) 1= Weo (e‘w“(z")ro Vi, zo) — Weo(20) — 1 log %O.

‘We thus obtain the alternative (ii)(a) in Theorem 4.7.

Case 2. We now suppose that lim supy,_, , . 7x/v/Ax > 0. Since 74, /+/ Ay, is bounded from
above and |z| = O(v/ Mgk 7+00, We may assume that

limsupr—k =dop>0

k—+oo V )\k

and that

—

. 2k
limsup — = ¢

k—+oco V )\k

for some constant vector ¢y. This together with (4.27) and (4.43) implies that there exists
some constant ro with 872 < ro < 6472 such that

~ 1
lim sup fx(2) = 7o (1 + 5 Hessy, (zo) [E’O + doz, G + doz])

k——+oo

uniformly in B r(0). Arguing the same way as in the proof of Case 1 to obtain (4.57), the
limiting function W, solves the equation

1 _
Agﬁ}\oo =179 (1 + 5 HeSSf0 (.1'0) [EQ + dyz, Co + doz] ) et (4.60)
in R*. Furthermore, in view of (4.45) and the L!'-bound (4.10), we have

/ et dy < 400
R4

and

1 .
1+ 5 Hessy, (z0)[¢0 + doz, ¢o + doz]}e‘lww(z) dz < +o0.

Jo

By denoting
Fy = T0<1 + % Hessy, (z0)[¢0 + doz, ¢o + doz]),
it follows from the decomposition
Pg, (@1, — Bo0) + (Pg, — A2) e =(apfr, 0 Tg + hy 0 Ty — Fio )@ (2)
F Fo (¢4Tr _ A
and (4.7) that @y, — W strongly in HL (R?*) as k — +oo.

Finally, by performing a translation and a scaling, equation (4.60) can be reduced as
1 _
A2 = (1 + 5 Hessy, (z0) [, zDe‘lw“.

We thus obtain the alternative (ii)(b) in Theorem 4.7. [l
The proof of Theorem 4.7 is complete. (]

4.3.2. Degenerate case. Now we consider the degenerate case. An analogue of Theorem
4.7 is the following result.

Theorem 4.8. Assume all the conditions, expcept for the assumption of the non-degeneracy
of the function fy at some maxima, in Theorem 4.7 above. If, in addition, (M, go) is locally
conformally flat and fy satisfies the Condition A with dy, Ay > 0, then for wy, defined as
in the Theorem 4.7 there exist suitable I € N with I < §, 7’,(;) N\ 0 and xg) — zgo) e M

with fo(:c((fo)) =0, 1 < ¢ < I such that the following hold
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(i) wg — —oo locally uniformly on
My = M\{z : 1 <i<I}.
(i1) Foreach 1l <1 < I, we have
Wi (z) := Wy (z,(j) + T,(Ci)z) + log T](j) — Weo(2)
strongly in H\ (R?), where zl(:) = exp;&) (x,(;)) and Weo induces a metric

AW

Joo = € gRr4

on R* of locally bounded curvature and of volume less than or equal 1.

Proof. For simplicity and clarity, we still use the notations in the proof of Theorem 4.7. We
first notice that Lemma 4.6 and the upper bound for f Qg dpg, as in (4.10) continue
to hold even if fy(x) has a degenerate maxima. Consequently, the bounds for a A as in
(4.27) also holds as well.

PART 1. The proof of statement (i) in Theorem 4.8 is then identical with that of the
corresponding statement in Theorem 4.7.

PART 2. We now examine the blow-up behavior of wy, near the blow-up point xg. Since
(M, go) is locally comformally flat, we may assume that M is flat around ¢, namely

(90)i5 = 0sj
in Bs(xo) for some fixed but small § > 0.

Claim 1. There is a constant pg > 0 such that for each p € (0, pp) to be determined later,

there exists a sequence of positive numbers (7 ), and a sequence of points (), C Bs(xo)
satisfying

lim 7, =0,
k—+oo

/ et dpg, = p,
BTk (mk)

xp — a9 and  wg(zr) — +ooask — oo,

/ e*r dug, <p forall ye B (k).
By, (y)

Proof of Claim 1. The proof of (4.61) is essentially similar to the proof of (4.35). Notice
that in the degenerate case we cannot assert an upper bound for rj/+/)\j as shown in
(4.35a). However, we still have the estimate r;, = 0(1)x_7too shown in (4.61a). To realize
this, we first notice by Lemma 4.6, the estimate Q;k_ < apAk + |hil, (4.27) and (4.7) that

871'2 — 0(1)k/‘+oo < /

Q™™ dtgy < (647 + o) [ e
B (Z())

Br(mo)
(4.62)
for all » > 0. In particular, we have
7
4wk JE—
e dpg, = =:po
/135(10) %765

for k large. With the help of the above estimate, we can follow the proof of Claim 1 in
Theorem 4.7 to obtain that for each p € (0, po) there exists 7 € (0,0) such that

sup / ehwr dpg, = p.
z€Bj(xo) Y Bry, ()
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This implies that
/ etk dpeg, < p. (4.63)
BTk (IU)

We are now ready to conclude (4.61a). Indeed, by the way of contradiction and up to a
subsequence, we may assume that limy_, ;o 7 = 79 > 0. Then, there holds B, /2(300) C
By, (zg) provided k is sufficiently large. This together with (4.63) and the choice of p
yields

w 7
/ e4kdug0<p<g.
B, /2(x0)

But this contradicts with (4.62) and the proof of (4.61a) is complete. As for the other
assertions in (4.61), their proofs are identical with those of Claim 1 in Theorem 4.7. O

Lacking of a bound for rj /v/\j brings us difficulty to obtain a local bound for v, f)\ e
T') as in (4.44). However, under an additional hypothesis on the flatness of (M, go) we
can proceed with some tools developed in [Mar(09] together with Condition A to regain its
local boundedness; see Claim 3 below.

Now, since (M, go) is locally comformally flat, we may assume that M is flat around
o, namely

(90)ij = 0s;

in Bs(xo) for some fixed but small § > 0. On one hand, this helps us to conclude that

dpg, = expy, (dug,) = dz.
This and the relation g = T;QFZ% imply that

—4

dug, =1y d,upz% =dz.
On the other hand, the Paneitz operator becomes the bi-Laplace operator in Bs(x). The
equation (4.5) becomes

Ay, = akf,\ke4w’“ + hpetvr
in Bs(xg). Let Wy, be defined as in (4.37), then wy, solves
A2y = fret®n (4.64)

in lA);w;, where, as before,

Je=arfx, 0Tk +hy ol
and N

Dis:={z € R*: |z +rpz| < 0}

Also because El/z(o) C (expy, oL'k) " H( By, (z1)) C B,(0) it follows from (4.61b) that

/A e 4z < p < /A et dz (4.65)
B1/2(0) B2(0)
and, similar to (4.41), we rewrite (4.61d) to get
/A 'k dz < p, (4.66)
B1/2(z)

forall z € El/(g\/r—k)(O).
Claim 2. The sequence wy, is bounded in Wlics (R*) forany 1 < s < 4/3.
Proof of Claim 2. Fix any R > 8, we let @,gi) solve
A2 = (A%@,)*  in Bg(0),
o = on dBx(0), (4.67)
Aw) = on dBR(0).
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Using the maximum principle twice, we obtain wH) >0> @,(;). In addition, w;, can be
decomposed as

@, = oy + oy + oy, (4.68)
where w,(c ) solves
A2 =0 in B(0),
A(O) =@x  ondBg(0),
A@(O) Ay, on dBg(0).

The next goal is to show the boundedness of w(+) in Wéf“ (R*) for some so > 1. To see

this, we observe, by (4.27), (4.66) and (4.7), the bound

/A (AQ@k)Jr dz = /A ﬁje‘m’“ dz
BT(Z) BT(Z)
< /A oy (fk oFk)Jre‘m’“ dz+/A ‘Tzk oFk|e4@’c dz
BT(Z) BT(Z)

< 65m%p + 0(1)k oo

for all z € ER/Q(O) and for » > 0 small. Hence, by choosing p sufficiently small we
obtain the bound
/A (A%@;) " dz < 872
Br(2)
+)

forall z € ER/Q( ) and for > 0 small. In view of the equation (4.67) satisfied by w( ,
we can apply [Lin98, Lemma 2.3] and a finite covering argument to find a positive constant
s1 > 1 such that

/A 1% 4y < O, (4.69)
Br/2(0)

Keep in mind that f,:r < apAk + |l~zk oI'x|. Hence, by repeating an argument used in (4.55)
together with (4.69) we can find some 1 < sg < min{4/3, s} such that

[ Gresyma
Br/2(0)

<C R (ak)\k)soe4so@k dz +C - |Ek ° Fk|soe4soﬂ?k dz < Cp.
Br(0) Br(0)

Plugging the estimate above into (4.67) gives
/A A2 % dz < Ch.
Br/2(0)
This together with Sobolev’s inequality implies that @,(f) is boundedin Wfé’cs” (R%). There-

fore, @,(:r) is bounded in C&?(R‘*) for some 0 < a < 1 — 1/s¢g. Moreover, we let

~ = 1/17. It then follows from (4.10) that

V[ made <y [ Rl < [ (Quldu, <57
Br(0) Br(0) M

Then repeating the previous argument we have
/A 1787 45 < O, (4.70)
Br/2(0)

Also, there holds

le(ci)HWS s(Br(0)) < Cgr 4.71)
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forall s € [1,4/3). Now, it follows from Jensen’s inequality, the decomposition of Wy, in
(4.68), Holder’s inequality, and (4.70) that

1+s1y

~(0) 4517 (0) ds1y
exp( - Wy, dz) < | et R dz
B, (z) B.(2)

1+s1y

4s () 1s
<(f emmmog)
B (2)

(1+s17)2

1
P (s17)2 (= As1~
g <][ e4wk dz) 4(e1m) (][ 6—4S1Vw,(C )dz> v
B, (2) B.(2)
<

Cr

(4.72)
forall z € Bg/4(0) and for r > 0 small. In (4.72), the symbol f, i denotes the average of
h over (). Notice that the estimate (4.47) also holds in the current case. This together with
(4.71) implies that

o) o S(4) ~(-)
IAD L2 B0y < NADR] L B0y + 1ADL ML (B o)) + 18Dk L1 Br(o)) < Cr-
Since A(A@,(CO)) = 0, we can apply [Mar09, Proposition 11] to get
(0
1AB 015, 0y < CrD) 4.73)

for every [ € N. Notice that by the mean value property for biharmonic functions, see
[ARSO06, Lemma 2.2], we have

2
3% (z) = ][g ( )a};’) dz+ 7 Ad( (2).

This together with (4.72) and (4.73) implies that
@, (2) < Cr

forall z € B r/4(0). In view of (4.73), we may apply weak Hanack inequality, see [GT98,
Theorem 8.18], to the function C'r — @](Co) to obtain that

o cither @,(CO) uniformly converges to —oo on B /4(0)

_(0)

o or [ | 1By 00y S Cr-
If the first case occurs, then from the decomposition of @y, in (4.68) and the boundedness
of @](;r) in C>%(R*), we know that

ﬁ}k < CR + w](430)7

which immediately implies that @w; — —oo uniformly on §3/4(0) as k — oo. From this

we deduce that
/A et dy -0
Br/4(0)

as k — +oo, which contradicts (4.65) since we have chosen R > 8. Hence, we must have
_(0)
10kl L (B a0y S Cr-
We then apply [Mar09, Proposition 11] again to get
~(0)
|, HCZ(ERM(O)) < Cr(l)
forevery [ € N and

~(0
Iz )HWL"’S(ER/AO)) < Cr(s)
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for every 1 < s < 4/3. Clearly, the estimate of @,(CO) in 01(33/4(0)) above together with
the decomposition of Wy, in (4.68) implies that

Wy < Cpr (4.74)

in ER/4(O)~ Moreover, the estimate of @,(CO) in W375(§R/4 (0)) together with (4.71) tells us
that @y, is bounded in W?”S(ERM(O)). Since R is arbitrary, the sequence @y, is bounded
in W.*(R*) forany 1 < s < 4/3. O
From Claim 2, up to a subsequence, there holds
ﬁ)\k — l/l}oo
weakly in VV{:’)CS (R*) for some 1 < s < 4/3 and almost everywhere on R*. By Fatou’s
lemma and (4.30), we can deduce that

/A et dz < lim inf/A ek 4z
(0) k=0 JBR,2(0)

Bry2
= lim inf/ etk 4z

k—roo ERrk/Z(Zk)

k—o0

< lim inf/ Mk dpag,
Brry, (1)
<1

Passing to the limit as R — 400 we find that P> ¢ L'(R*) with

/ eP>dz = lim R et < 1.
R4 R—+o0 Bpr/2(0)

Now, recall akﬁk o'y = ap g + akfo o I'y, and for simplicity, we denote
for = arfoo L'y,
which is non-positive. By (4.27), we may assume, up to a subsequence, that
g — p € [87%, 6477
as k — +4o0.

Claim 3. The sequence akfo o I'y, is locally bounded (from below).
Proof of Claim 3. Suppose that for some sequence yz — o in R* there holds
ak|fo(zk)| — +oo
as k — 400, where
Zw = Li(yk) = 2k + T
Denote py = exp, (Zx). Because z;, — 0 as k — oo, we then have p, — x¢ € M as

k — 4o00. From this we may assume from the beginning that d(py) < dy. By Condition
A, there exist some Ay > 0 and a sequence of cones K, with vertex at p;, such that

A inf |axfo(Tr(y))| = Aoay dnf |fo(2)| = awlfo(Zx)] — +oo, (4.75)
P

ye Pl

where with a suitable labeling of coordinates

f(pk = F;l(ka) = {z tzp + Rz € ka}

3

—{y= ™) | W -2 <t uil - el <dofre
=1
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On the other hand, by the estimate ozﬂfo oTy| = apAi — oakf)\k o I';, and the fact that
/ I et dug, = 0, as routine we can apply Fatou’s lemma to get that

/ lim inf (ozk|f~’0 o Fk|)e4@°° dz < liminf/ ak|fo o Fk|e4ﬁ°" dz
ER/Z(O) k=00 k—+oo ER/Z(O)

< lim inf/A (arAk — apfr, )™ dz
k=400 JBpyy s2(21)

k— o0

= lim inf/ (A — cykf,\,v)(f““’C dpg,
Bryy, (zk)

< p.
(4.76)

We thus obtain the contradiction from (4.75) and (4.76), namely, the sequence ﬁ)k is locally
bounded. O

We now make use of Claim 3 together with the local upper bound of wy, in (4.74) to
ensure, up to a subsequence, that

a (.]?0 o I—\k)eélvf)k N }-\0064@00

weakly-* in the sense of measures, where foo < 0 is locally bounded from below. By
setting

Foo=p+ .]/C\oo
and recall the definition of fj and p we know that
ﬁeﬁl’@k N Foo€4ﬁ}°o

weakly-* in the sense of measures. Furthermore, we get from (4.10) the following bound

/ | Frole®> dz < 2p < 12872,
R4

(RY).
Proof of Claim 4. By repeating the estimate in (4.51), it follows from the local boundedness

of ay, fx, o', established in Claim 3, the local upper boundedness of @y, in (4.74), and the
smallness of ||hx| 12(a1,g,) in (4.7) that

Claim 4. The sequence @y, is bounded in Hi! .

/A ‘ﬁ;e‘hﬁ’“ |2 dz < C/A |ozkf~}k o Fk‘Qe&ﬁ’“ dz +C/A |l~zk ) Fk|2e8@’“ dz
Bry4(0) Br/4(0) Bry2(0)
< Cp+Cp / o o Ty 247 dz

Bry2(0)
<Cr+ CRHth%Q(IW,gk) < Cr.
This together with the equation satisfied by wy, in (4.64) implies that wy, is bounded in
H (RY). O
In view of Claim 4, we have that
’L/U\k — @oo

weakly in H_(R*) and strongly in C[>%(R*) for some 0 < o < 1/2. Moreover, by

loc
passing to the limit we deduce that W, solves the equation

AW = Fooe*t>
in R*. Finally, it follows from the decomposition

A2Dy — A’ = (akf\k ol JriNLk ol'y — Foo)e‘m’C + Foo(e4“7’€ — 64“"”)

that @y, — Woo strongly in Hif ((RY).



BUBBLING OF THE PRESCRIBED Q-CURVATURE EQUATION 39

5. BUBBLING ALONG THE FLOW

As in the case of Gaussian curvature flow studied by Struwe, it is unreasonable to expect
that Theorem also holds for non-minimizing critical points

5.1. Bounds for total curvature along the flow. Bounds analogue to Lemma 4.5 can also
be obtained for the solutions to the prescribed QQ-curvature flow (2.6) for f).

As in the static case, let fo < 0 be a smooth, non-constant function with maxy; fo = 0.
Let 0 < A < A\g and let f\ = fo + A as above where Ay > 0 is chosen in such a way that
fx, changes sign and satisfies (1.3), namely fM fro ditgy < 0. Forany 0 < A < Ap and
any o € (—og,0), where the number oy = oo(\) will be determined in Lemma 5.2 below,
we choose ug, € X7 such that

E(ugy) < Br+ (5.1)
where, as in (2.4), we set
Bxr =min {&(u) : u e X7 }.

For such an initial data ug,, it follows from Theorem 2.5 that the flow (2.6) possesses the
smooth solution

uf = u3(t)
with o = a§(t). We also let g§ = €**3 gg.

First, we establish the following simple result.

Lemma 5.1. For any real number «, there exists a constant €5 > 0 independent of « and
time such that

/ e“"* dug, < 6B,
M

where ug is a solution to the flow (2.6) with the initial data ug, satisfying (5.1).

Proof. Observe that uf € X7 and

auf _ aug a(u—ug
/e rdpg, =e */e(* )‘)dﬂgo.
M M

Of course the case a = 0 is trivial. If & < 0, then as in the proof of Lemma 4.1 we apply
Adam’s inequality (3.2) to get

s o —o 1
—4uf _ 4(71}*“)\)(1 <€ (_g o )
5 [ 5541 < e (g

Using this, we can bound [ 27 exp(aug) dpig, from above as follows

i < (enon (o)) v o)

If o > 0, then as in the proof of Lemma 4.6 we know that u§ < 0, which then implies that

auf a(uf —uf o? o
/Me N dpg, < /M€ (=72 dpg, < Gaexp (Wg(uox))-

Putting these estimates together we obtain the existence of ¢z. Clearly, 65 is independent
of v and time, however, %3 depends on o and A. O

The following lemma is the key result of this section.
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Lemma 5.2. There holds

lim inf lim sup lim su / o|ldu, o
AN0 U/op ta+oop M |ng| Has

< 2liminf lim sup lim sup(\ag (£)) < 2liminf(\|B84]) < 12872.
S o U/Op t_>+oop( (1) < A0 (AIBA]) <

Proof. We split our proof into two steps as follows.

Step 1. We claim that for any 0 < A < \g we can find some o9 = oo(A) > 0 sufficiently
small such that for each ¢t > 0 and o € (—0p,0) we have

u +of € Xy,
for some p = p(t) > A with
C ol <p= A < Clol,

where C' > 0 is constant independent of ¢ and o. To see this, we notice from (2.9) that
u§(t) € X3, forallt > 0. By mean value theorem, there exists two functions o”, 0"/
valued in (o, 0) such that

/ f/\e4(u§+ofx) dpgy = / I [64(u§+af>\) _ e4u§:| ditg,
M M

—do [ TR dy
M
and

/ 64(ui+afx)dﬂgo -1 +/ |:e4(ui+afx) _ e4u§:| dﬂgg
M M
1o [ e duy, 1800 [ SR duy,
M M

=1+807 / FRASHIN) qp
M

Therefore, in view of the identity

fue4(ui+0f>\) dgig, :/ f}\e4(u§+af>\) dgg, +(p— )\)/ eAuS+ofx) dgg,,
M M M

if we let u be
40’ f]\/] f§e4(ui+a-/f>\) dugo
1+ 80-2 fM f§e4(ui+o//f>\) dugo

depending on ¢, then u§ + o fx € X,. To bound |z — A|, we need further estimates for
numerator and denominator of  in (5.2). First we note by Holder’s inequality that

o ’ 2 —4(u+o’
/ FRet3r eI dpg, > (/ fkdﬂgo) (/ e md”g“)
M M M

Because

/ e~ 1) gy (/ +/ )674<u;+0,fx>dugo
M {fr<0} {fx>0}

<exp (ol hl=rm) [ et [ e,
{f>\§0} {fx>0}

L=\ > A, (5.2)

-1

which implies that

/ e—4(u§+a’fx) dﬂgo < 2/ e—4u§ dﬂgo
M M
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if we further choose |o| sufficiently small. From this and Lemma 5.1 we deduce that there
exists some positive constant ¢(\, og) depending only on A and o such that

/M FRARFT I dpg, > e, o) (5.3)

forany 0 < A < Ag, any o € (—09,0), and any o’ € (0,0). Moreover, it is easy to see
that

B84 Ay <1l (a1.00) 3P (41011 Fall e (11.00)) /M S dug,

<A (a1,90) €xP (4ol fAll Lo (a1,g0))

M

(5.4)

forany ¢ > 0 and any o’ € (o, 0). From this we can bound | — A| from above as follows

=A< ol [ RS dy,
M

< ASANZ o (a1,0) €30 (4ol Fll Low(ar,90)) 10T

Moreover, we can also bound |p — A| from below, thanks to (5.3) and (5.4). Hence, for any
0 < A < A\g we can find 0g = 0¢(A) > 0 such that

C) ol < ln =A< C)]o]

forall o € (—09,0), where C'(\) > 0 is independent of ¢ > 0 and ¢ but could depend on
A. The claim is thus proved.

Step 2. It follows from [NZ17, Lemmas 4.1 and 6.3 ] that a§(¢) and u(t) are uniformly
bounded in time ¢ and o. Notice that by the relations

4u?
Qgie N =Pgul, ul,=oalfr— Qg;’

we can expand &' (u§ + o fy) to get
E(5 + 03) = ER) +40 [ Pogufrdug, +0*6 (1)
M

=& ug) + 400&/ et duy, —40/ ui,tf)\e‘mi dpg, +02E(fo).
M M
Observing that [NZ17, Lemma 6.1] yields
/ [uf 47e"% dpug, = / oS fx = Q™S g, — 0 (5.5)
M M

as t — +oo. Hence, by (2.8) and Holder’s inequality, we can estimate

o 4uf§ o |2 4uf 1/2

[ e dig, | < Uslann ([ 105 P e ) =0
M M

as t — +oo. Since the energy &' (ug) is decay along the flow, we have, by (5.1) and the
expansion of & (ug + o fy) above, that

Bu < &S +0fx)

<EWS) +40aS [ f2eMS dpugy +02E(fo) + o(1)
M

< By doag [ FeS dpg, 031+ () + (1),
M
However, from (5.2) we obtain

40/ fRe" S dpgy = A= p+4ol,
M
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with

I= | fihe"Sdpy,,

M
where
e4U/f)\
h - 1 - 4 o 1" -

14807 [y MR Ry,

Clearly

R
M
Because o’ € (o, 0), there is some constant C' > 0 independent of ¢ and o such that

1]l Lo (a1,g0) < Clo]-
Keep in mind that u§ € X ;A. From this we can use (2.8) to bound [ as follows

< AT 01,90 1l o= (a2, g0) < COV) = Al

where C'(A) > 0 is a uniform constant independent of ¢ and o. Therefore, with error
o(1) — 0 as t — 400 and the uniform bound of o in ¢ and in o we arrive at the estimate

By < Br+af(A—p+4ol) +0*(1+ &(f)) + o(1)
= Br— af (1= N) + OL) (1 — N)? + (1),
where O(1) is independent of ¢ but could depend on A and 0. This implies that
lim sup of (¢) < limsup (ﬁ/\ Bu +O0(1)(u— )\))
t—+400 t—+o0 M= A

Now, as ¢ * 0, we have from (5.2) that ;& \, A uniformly in time ¢ > 0. So, for almost
every A € (0, \o) there holds

=Bl

lim sup limsup af () < lim ———+ Br=
0,0 t—+oo BN — )\

Multiplying both sides by A > 0, as in the proof of Lemma 4.5, we find that

lim inf lim sup lim sup(Aag) < lim inf(\| 84 ]) < 6472
N /OP P p(Aag) N0 (AIBAD)

Finally, it follows from the flow equation (2.6) and (4.4) that
|ng| oS | fal + U,\t 2Xaf —alfx + U,\ )

which then gives

[ 1@l <2003 + [ il diagg = 2005 + (1),

thanks to (2.8) and (5.5). From this the lemma follows. [l

5.2. Bubbling of the prescribed curvature flow. In this subsection, we devote ourselves
to prove the blow-up behavior along the prescribed Q-curvature flow, namely Theorem 2.6.
From Lemma 5.2, it follows that there exists a sequence A ~\, 0 such that

sup lim sup lim sup(Aza§, () — 1/k) < 647>
kEN o0  t—oo

We may then fix a sequence o, * 0 with

sup sup limsup(Araf, (t) — 2/k) < 647>
k€N o <o<0 t—+o00

Choosing o = oy, for each k € N, we find, for suitable 7}, — +o0 satisfying

Fult) = [ gt Ol dinge <1/
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for t;, > T} , we find the bound

ts>u%) / |Qg;r;z | dug;: < sup (25t + Fi(t)) < 12872 +5/k, (5.6)
2Ty J M 2Ty

for any k € N. Hence, if for each k € N for any t;, > T}, we let wy = uiz (tx), then wy,
satisfies (4.5) with o, = a3" (tx) and hy, = u3* ,(t4). From this we can apply Theorems
4.7 and 4.8 to get the desired result. This completes the proof of Theorem 2.6.
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