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ROBUST STABILITY FOR IMPLICIT DIFFERENTIAL

EQUATIONS WITH CAUSAL OPERATORS

NGUYEN THU HA* AND TRAN MANH CUONG#

Abstract. In this paper, we consider the robust stability of implicit differ-
ential equations where the leading term is singular and the driving term is a

causal linear operator. We study the solvability of linear and nonlinear equa-

tions and then the robust stability under small perturbations is established.
An Lp version of Bohl-Perron Theorems for these systems is also studied.

1. Introduction

The differential equations driving by the causal operators, named “aftereffect op-
erators” (see [7]), are very important both in practice and theory because they are
generalized from ordinary equations, partial differential equations, integral equa-
tions, delay or functional differential equations, which often are used to describe
mathematical models in economy, industry, eco-systems... Therefore, the study of
the quality and quantity, concerning with problems of stability or robust stability,
of differential equations with causal operators has attracted many mathematical
works. There are some ways to carry out these problems. One can use either
the so-called stability radii, introduced by [19], to measure how is large possible
for perturbation which still preserves the stability of an ordinary linear system
[2, 4, 12, 22, 21, 23, 31] or the Lyapunov exponents, Bohl exponents to estimate the
growth rate of solutions [2, 6, 11]. However, in general, the calculation of stability
radii or Lyapunov exponents is a rather difficulty problem. Instead, one try to
construct a Lyapunov function, via which, we know whenever a system is stable
or unstable (see [7, 10]). In case the above mentioned methods are not applica-
ble, researchers try to find a bound, under which the exponential stability or the
boundedness of perturbed systems is preserved [2, 27, 26, 33].

An other aspect to consider the stability of a system is the Bohl-Perron type
theorem which says that, for a differential/difference operator L if the solution of the
equation Lx(t) = f(t), t ⩾ 0 is “good” for every function f(·) to be “rather good”,
then the solution of the corresponding homogeneous equation Lx(t) = 0, t ⩾ 0 is
bounded or exponentially stable. The study of Bohl-Perron theorem is concerned
with delay differential/difference equations can be founded in [3, 29, 30]; for infinite
delay difference systems x(n+ 1) = (Lx)(n) + f(n) in [1, 3, 8, 20, 16].

An Lp-version for Bohl-Perron Theorem can be referred to [3, 15, 16]. However,
almost works deal with just the case of bounded delay equations of integrability of
kernels.

On the other hand, to describe the mathematical modeling in engineering and
science such as in multibody and flexible body mechanics, electrical circuit design,
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incompressible fluids (see [14, 24, 32], a formulation of differential systems where
the leading term of derivatives may be degenerate is presented. The simplest case
is linear differential algebraic equations (DAEs) A(t)x′(t) = B(t)x(t) + f(t), t ⩾ 0
where A(t) is singular for every t. There are many works dealing with the ro-
bust stability of these systems [4, 5, 24, 25]. Due to the fact that the dynamics
of DAEs are constrained and combinate between differential and difference compo-
nents, some extra difficulties appear in the analysis of stability as well numerical
treatments of the implicit dynamic equations characterized by index concepts, see
[5, 18, 24, 25].

In continuing to study these problems, it is natural to consider the robust sta-
bility and Bohl-Perron theorem for differential algebraic equations with the right
hand to be a causal operator (say implicit differential equation)

A(t)x
′
(t) = B(t)x(t) + Σx(·)(t) + f(t), t ⩾ 0, (1.1)

where A,B and Σ, f are specific late. The leading matrix A(t) is supposed to be
singular for all t ⩾ 0. It is known that the solvability of this equation depends
strongly on the so-called index concepts. For some reasons, we concentrate in
the index-1 equations and we focus on the study of Lp-stability version and the
preservation of exponential stability of (1.1) under small perturbation. Also, we
consider an Lp Bohl-Perron type theorem for this system.

The paper is organized as follows. In the next section, we introduce some pre-
liminary notations, inequalities and the concept of causal operators. Section 3 deals
with the solvability and the dependence on the initial condition of the solutions.
In Section 4 we prove that if the linear homogeneous implicit equation is exponen-
tially stable, then the perturbed system is either Lp-stable or exponentially stable
depending on the assumption of perturbations. Section 5 presents the famous Bohl-
Perron theorem for implicit differential systems in Lp-form.

2. Preliminary

For any s < t and p ⩾ 1, let Lp

(
[s, t];Rn

)
be the Banach space of all p–integrable

functions f : [s, t] → Rn with the norm

∥f∥Lp([s,t];Rn) =

(∫ t

s

∥f(τ)∥pdτ
) 1

p

.

Denote by Lloc
p ([0,∞);Rn) the space of all f : [0,∞) → Rn such that f

∣∣
[s,t]

∈
Lp

(
[s, t];Rn

)
for all t > s ⩾ 0.

The truncated operators πk at k ∈ [0,∞) and [ · ]k on Lloc
p

(
[0,∞);Rn

)
are

defined by

πk(u)(t) :=

{
u(t), if t ∈ [0, k]

0, if t ∈ (k,∞),
and [u(t)]k =

{
0 if t ∈ [0, k)

u(t) if t ∈ [k,∞),

for u ∈ Lloc
p

(
[0,∞);Rn

)
.

Every element f ∈ Lp

(
[s, t];Rn

)
can be considered as an element f ∈ Lloc

p ([0,∞);Rn)

by putting f = πt[f ]s. Conversely, if f ∈ Lloc
p ([0,∞);Rn), we can restrict the def-

inition domain of f to obtain an element f ∈ Lp

(
[s, t];Rn

)
. We will identify in the

following f and f if there is no confusion.
Let

L := L
(
Lloc
p ([0,∞);Rn), Lloc

p ([0,∞);Rn)
)
,
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be the space of the linear operators Σ from Lloc
p

(
[0,∞);Rn

)
to Lloc

p

(
[0,∞);Rn

)
such that πtΣπt maps continuously from Lp([0, t];Rn) to Lp([0, t];Rn). Similarly
as above, every continuous operator Σ ∈ L

(
Lp([s, t];Rn), Lp([s, t];Rn)

)
can be

considered as

Σ ∈ L
(
Lloc
p ([0,∞);Rn), Lloc

p ([0,∞);Rn)
)
,

by setting Σ(·) = πtΣπt[·]s.
An operator Σ ∈ L is called to be causal if

πtΣπt = πtΣ, for every t ⩾ 0. (2.1)

To simplify notations, in the following, we write Lp[s, t];C[s, t] for Lp([s, t];Rn),
C([s, t];Rn) respectively.

Lemma 2.1 (Gronwall-Bellman lemma, see [29]). Let f(t) be a non negative contin-
uous function defined on [s,∞) and k > 0. Assume that f(t) satisfies the inequality

f(t) ⩽ f0 + k

∫ t

s

f(s)ds, for all t ⩾ s.

Then, the relation f(t) ⩽ f0e
k(t−s) holds for all t ⩾ s.

Lemma 2.2 (Hardy’s inequality [29]). Let 1 ⩽ p < ∞, there is a finite C for which[ ∫ ∞

0

∣∣∣U(x)

∫ x

0

f(t)dt
∣∣∣pdx] 1

p

⩽ C
[ ∫ ∞

0

∣∣V (x)f(x)
∣∣pdx] 1

p

(2.2)

is true for real function f if and only if

B = sup
r>0

[ ∫ ∞

r

|U(x)|pdx
] 1

p
[ ∫ r

0

|V (x)|−qdx
] 1

q

< ∞,

where 1
p + 1

q = 1 and U(x), V (x) are weight functions. Furthermore, if C is the

least constant for which (2.2) holds, then B ⩽ C ⩽ p
1
p q

1
q B, for 1 < p < ∞ and

B = C if p = 1 or ∞.

Remark 2.3. If we use U(x) = V (x) = e−αx then

B = sup
0⩽r⩽t

[∫ t

r

(eαs)
p
ds
] 1

p
[∫ r

s

(e−αs)
−q

ds
] 1

q

=
1

αp
1
p q

1
q

and
1

αp
1
p q

1
q

⩽ C ⩽
1

α
.

Lemma 2.4. Let U : X → Y , V : Y → X be the bounded linear operators in
Banach spaces X,Y . Then the operator I − UV is invertible if and only if I − VU
is invertible. Furthermore,

(I − VU)−1 = I + V(I − UV)−1U.

Proof. See [23]. □

We introduce some basic properties of linear algebra which are used later.

Lemma 2.5. Let A and B be given n × n matrices, and Q be a projector onto

ker A, i.e., Q
2
= Q, im Q = ker A. Denote S = {x : Bx ∈ im A}. The following

assertions are equivalent

a) S ∩ ker A = {0}.
b) the matrix G = A−BQ is nonsingular.
c) Rn = S ⊕ ker A.
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Proof. The proof of this lemma can be found in [28], Appendix 1, Lemma A1,
p.329. □

Lemma 2.6. A,B, Q,G mentioned in Lemma 2.5 and suppose that the matrix G
is nonsingular. Then, there hold the following relations:

a) P = G
−1

A where P = I −Q.

b) −G
−1

BQ = Q.

c) Q̂ := −QG
−1

B, called canonical projector, is the projector onto ker A
along S.

d) QG
−1

does not depend on the choice of Q.

Proof. The results in this lemma are proved in [28], p.319. □

3. Solvability of differential algebraic equations with causal
operators

3.1. Solvability of linear differential-algebraic equations.

LetA(·), B(·) be two continuous functions valued in Rn×n and f ∈ Lloc
p

(
[0,∞);Rn

)
Let Σ ∈ L be a causal operator. For ever s ⩾ 0, consider the differential-algebraic
equation (DAE for short)

A(t)x′(t) = B(t)x(t) + Σ
(
[x(·)]s

)
(t) + f(t), t ⩾ s. (3.1)

Suppose that ker A(·) is smooth in the sense there exists a continuously dif-
ferentiable projector Q(t) onto ker A(t), i.e., Q is continuously differentiable and
Q2 = Q, im Q(t) = ker A(t) for all t ⩾ 0. Set P = I −Q, then P (t) is a projector
along ker A(t). By these notations, the equation (3.1) can be rewritten into the
form

A(t)
(
Px
)′
(t) = B(t)x(t) +

(
Σ[x(·)]s

)
(t) + f(t), t ⩾ s, (3.2)

where B := B +AP ′. The homogeneous equation corresponding to (3.2) is

A(t)(Py)′(t) = B(t)y(t) +
(
Σ[y(·)]s

)
(t), t ⩾ s. (3.3)

From the equation (3.2) it is seen that the solution x(·), if it exists, is not
necessarily differentiable but only Px(·). Moreover, since f is only measurable, we
have to understand the solution x of the initial problem (3.2) in Caratheodory sense,
i.e., Px(·) is continuous and it is differentiable almost every where with respect to
Lebesgue measure on [s,∞). Therefore, we look for solutions x(·) of the equation
(3.2) from elements of H 1

(
s) defined as

H 1
(
s) =

{
x(·) ∈ Lloc

p

(
[s,∞),Rn

)
: P (·)x(·) is continuous

and almost everywhere differentiable on [s,∞)

}
.

Next, we deal with the way to find these solutions based on the so-called index-1 con-

cept of the equation (3.1). Consider the linear operatorsG ∈ Lloc
∞
(
[0,∞);Rn×n

)
, Ĝ ∈

L
(
Lloc([0,∞);Rn), Lloc([0,∞);Rn)

)
defined by

G := A−BQ and Ĝ := A−
(
B +Σ

)
Q =

(
I − ΣQG−1

)
G.

Definition 3.1. The DAEs (3.1) is said to be index-1 if G(t) and Ĝ are invertible
for all t ⩾ 0.



ROBUST STABILITY FOR IMPLICIT DIFFERENTIAL EQUATIONS 5

Remark 3.2. Since G(t) is invertible for all t ⩾ 0, the invertibility of Ĝ is equiva-
lent to the invertibility of I−ΣQG−1. Due to Lemma 2.4, it implies the invertibility
of H := I −QG−1Σ.

Note that by Lemma 2.6, the index-1 property does not depend on the choice of
projectors P, see [17].

In assuming that the equation (3.1) is index-1 we split the solution of (3.2) into
x(t) = P (t)x(t) +Q(t)x(t), t ⩾ s and try to solve u(t) = P (t)x(t), v(t) = Q(t)x(t).
In order to do that, let t ⩾ s, taking into account the equalities

G−1A = P, G−1B = −Q+G−1BP,

we multiply both sides of (3.2) with PG−1, QG−1 to obtain

u′ =
(
P ′ + PG−1B

)
u+ PG−1Σ[x]s + PG−1f, (3.4)

v = QG−1Bu+QG−1Σ[u+ v]s +QG−1f. (3.5)

Since H = I −QG−1Σ is invertible, from the (3.5) we get

v = H−1QG−1
(
B +Σ

)
[u]s +H−1QG−1[f ]s. (3.6)

Combining with H−1QG−1Σ = H−1 −H−1(I −QG−1Σ) = H−1 − I yields

v = −[u]s +H−1P̂ [u]s +H−1QG−1[f ]s,

where Q̂ = I − P̂ = −QG−1B is the canonical projection onto ker A (see Lemma
2.6). Hence,

x(t) =
(
H−1P̂ [u]s

)
(t) +

(
H−1QG−1[f ]s

)
(t). (3.7)

Substituting this relation into (3.4) gets the inherent equation of (3.3)

u′ =
(
P ′+PG−1B

)
u+ PG−1ΣH−1

(
P̂ [u]s+QG−1[f ]s

)
+PG−1[f ]s. (3.8)

Lemma 3.3. Let S be a function defined on [s, T ] × Lp

(
[s, T ];Rn

)
, valued in

Lp

(
[s, T ];Rn

)
, such that S(t, u) depends only the values of u on [s, t] for every

u ∈ Lp

(
[s, T ];Rn

)
and S satisfies the Lipschitz condition, i.e., there is a constant

k > 0 such that

∥S(t, u1)− S(t, u2)∥Lp[s,t]
⩽ k ∥u1 − u2∥Lp[s,t]

,

for all s ⩽ t ⩽ T , u1, u2 ∈ Lp

(
[s, T ];Rn

)
. Then the equation

z′ = (P ′ +PG−1B)z + PG−1S(t, z), (3.9)

with the initial condition z(s)=P (s)x0 has a unique solution z(·) satisfying:
i) z(t) ∈ im P (t), for all t ⩾ s.
ii) there exists a constant c such that if z1(·) and z2(·) are two solutions of

(3.9) then

∥z1(t)− z2(t)∥ ⩽ c ∥z1(s)− z2(s)∥ , for all t ∈ [s, T ]. (3.10)

Proof. The existence of a unique solution with the initial condition z(s) = Px0 can
be referred to [7, Theorem 3.16].

Multiplying both sides of (3.9) with Q yields Qz′ = QP ′z, which implies that
(Qz)′ = Q′Qz. Thus, if Q(s)z(s) = 0 then Q(t)z(t) = 0 for all t ⩾ s. This means
that z(t) = P (t)z(t) or z(t) ∈ im P (t).
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Finally, let z1 and z2 be two solutions of (3.9). Then,

∥z1(t)− z2(t)∥ ⩽ ∥z1(s)− z2(s)∥+
∫ t

s

∥∥(P ′ + PG−1B)(τ)(z1(τ)− z2(τ)
∥∥ dτ

+

∫ t

s

∥∥PG−1(τ)
(
S(τ, z1)(τ)− S(τ, z2)(τ)

)∥∥ dτ.
Therefore,

∥z1(t)− z2(t)∥p ⩽ 3p−1

[
∥z1(s)− z2(s)∥p+

(∫ t

s

∥∥(P ′ + PG−1B)(z1(τ)− z2(τ))
∥∥ ds)p

+
(∫ t

s

∥∥PG−1(τ)(S(τ, z1)(τ)− S(τ, z2)(τ)
∥∥ dτ)p]

⩽ 3p−1 ∥z1(s)− z2(s)∥p +K

∫ t

s

∥z1(τ)− z2(τ)∥p dτ,

where K = 3p−1T
p
q
(
sup

τ∈[0,T ]

∥∥(P ′ + PG−1B)(τ)
∥∥+ k sup

τ∈[0,T ]

∥∥(PG−1)(τ)
∥∥ ). By using

Grownall-Belman inequality we get

∥z1(t)− z2(t)∥ ⩽ ∥z1(s)− z2(s)∥ 3e
Kt
p , for all t ∈ [s, T ].

Putting c = 3e
KT
p gets (3.10). The proof of Lemma is complete. □

Thus, by virtue of Lemma 3.3, we can find the solution u with the initial condition
u(s) = P (s)x(s) from the equation (3.8). Next, we use (3.7) to get the solution x(·)
of the equation (3.2).

3.2. Variation of constants formula.
We now try to give the variation of constants formula for the solution x(·) of

(3.2). The homogeneous equation (3.3) can be rewritten as{
u′(t) =

(
P ′ + PG−1B

)
u(t) + PG−1ΣH−1

(
P̂ [u]s(t)

)
,

y(t) =
(
H−1P̂ [u]s

)
(t), t ⩾ s,

(3.11)

where u = Py. Define by Φ(t, s), t ⩾ s ⩾ 0 the Cauchy matrix generated by (3.3),
i.e., it is the solution of the matrix equation

A(t)Φ′(t, s) = B(t)Φ(t, s) + Σ
(
[Φ(·, s)]s

)
(t), (3.12)

P (s)
(
Φ(s, s)− I

)
= 0, t ⩾ s ⩾ 0.

Due to (3.11) and the invariant property mentioned in Lemma 3.3 we have

Φ(t, s) =
(
H−1P̂ [Φ0(·, s)]sP (s)

)
(t), t ⩾ s ⩾ 0, (3.13)

where, Φ0(·, ·) is the solution of the matrix equation

Φ′
0(t, s) =

(
P ′ + PG−1B

)
(t)[Φ0(t, s)]s + PG−1ΣH−1(P̂ [Φ0(·, s)]s)(t),

Φ0(s, s) = I, t ⩾ s ⩾ 0.
(3.14)

The variation of constants formula for the solution of (3.2) can be formulated as
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Theorem 3.4. The unique solution x(·) of the equation (3.2) with the initial con-
dition P (s)(x(s)− x0) = 0 can be expressed as

x(t) = Φ(t, s)P (s)x0 +

∫ t

s

Φ(t, τ)PG−1 (T[f ]s) (τ)dτ

+ (H−1QG−1[f ]s)(t),

(3.15)

for all t ⩾ s, where T := I +ΣH−1QG−1.

Proof. By directly differentiating both sides we see that the variation constants
formula for the solution u(·) of (3.8) with the initial condition u(s) = P (s)x0 is

u(t) = Φ0(t, s)P (s)x0 +

∫ t

s

Φ0(t, τ)PG−1
(
I +ΣH−1QG−1

)
[f ]s(τ)dτ

= Φ0(t, s)P (s)x0 +

∫ t

s

Φ0(t, τ)PG−1
(
T[f ]s

)
(τ)dτ.

(3.16)

By acting H−1P̂ to both sides of (3.16) and paying attention to the expression
(3.7) it is seen that the unique solution x(·) of (3.2) can be given by the variation
of constants formula (3.15)

x(t) = Φ(t, s)P (s)x0 +

∫ t

s

Φ(t, τ)PG−1(T[f ]s)(τ)dτ + (H−1QG−1[f ]s)(t).

The proof is complete. □

Remark 3.5. From the expression (3.15) we see that although P (·)x(·) is contin-
uous, the solution x(·) of (3.2) may not be continuous.

4. Preservation of stability under small nonlinear perturbations

Let y(t, s, y0), t ⩾ s denote a unique solution of the equation (3.3) with initial
condition P (s)(y(s)− y0) = 0.

Definition 4.1.

i) The differential algebraic equation (3.3) is uniformly stable if there exists a
positive number M0 > 0 such that for every s ⩾ 0 we have

∥y(t, s, y0)∥ ⩽ M0 ∥P (s)y0∥ , t ⩾ s, y0 ∈ Rn. (4.1)

ii) Let α > 0. The differential algebraic equation (3.3) is said to be α-exponentially
stable if there exists a positive number M for every s ⩾ 0 we have

∥y(t, s, y0)∥ ⩽ M ∥P (s)y0∥ e−α(t−s), t ⩾ s, y0 ∈ Rn. (4.2)

Assumption 1. There exists a differentiable projector Q(·) onto ker A(·) such that
P = I −Q is bounded on [0,∞) by constant K0.

The following characterizations of uniform stability and exponential stability are
straightforward generalizations of the well-known results for ordinary differential
equations, see the proof of (3.5), page 112 and (4.13), page 124 in [10]. Therefore,
we omit the proof of the following theorem in details.

Theorem 4.2. Let the assumption 1 hold. Then,

i) The differential algebraic equation (3.3) is uniformly stable if and only if
there exists a positive number M0 > 0 such that

∥Φ(t, s)∥ ⩽ M0, t ⩾ s ⩾ 0. (4.3)
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ii) The differential algebraic equation (3.3) is α-exponentially stable if and only
if there exists a positive number M such that

∥Φ(t, s)∥ ⩽ Me−α(t−s), t ⩾ s ⩾ 0. (4.4)

By Theorem (4.2) we can estimate ∥Φ0(t, s)P (s)∥. Indeed, from (3.13), it is seen
that

P (t)Φ(t, s) = P (t)
(
H−1P̂ Φ0(·, s)P (s)

)
(t) = Φ0(t, s)P (s), t ⩾ s. (4.5)

Therefore, if the relation (4.4) and the Assumption 1 hold then

∥Φ0(t, s)P (s)∥ = ∥P (t)Φ(t, s)∥ ⩽ K0Me−α(t−s), t ⩾ s. (4.6)

We are now in position to consider the stability of (3.3) when f is small pertur-
bations.

Let F be a causal nonlinear operator from Lloc
p

(
[0,∞);Rn

)
to Lloc

p

(
[0,∞);Rn

)
,

i.e., the condition (2.1) for F is satisfied

πt F πt = πt F for all t ⩾ 0.

Suppose further that F (θ) = θ, where θ(t) = 0, for all t ⩾ 0.
For every s ⩾ 0, consider the semi linear differential equation with causal oper-

ators
A(t)x′(t) = B(t)x(t) + Σ[x(·)]s(t) + F

(
[x(·)]s

)
(t), t ⩾ s. (4.7)

Since F (θ) = θ, the equation (4.7) has the trivial solution x = θ.
A causal nonlinear operator Γ : [0,∞) × Lloc

p

(
[0,∞);Rn

)
→ Lloc

p

(
[0,∞);Rn

)
is

called locally Lipschitz with the function m if

• πtΓ(t, u) = πtΓ(t, πtu) for every u ∈ Lloc
p

(
[0,∞);Rn

)
.

• there exists a positive continuous function m· such that

∥Γ(t, x)− Γ(t, y)∥Lp[0,t]
⩽ mt∥x− y∥Lp[0,t],

for all t ∈ [0,∞) and x, y ∈ Lloc
p

(
[0,∞);Rn

)
In case m is a constant function, we say simply that Γ is locally m-Lipschitz

continuous.

Theorem 4.3. Suppose that the function PG−1TF
(
x) is locally Lipschitz contin-

uous in x with the function k· and H−1QG−1F (x) is locally γ-Lipschitz continuous
in x with γ < 1.

Then the equation (4.7) is solvable on [s,∞). Moreover, for any T > 0, there is
a constant MT such that

∥x(·)∥Lp[s,t]
⩽ MT ∥P (s)x0∥ , for all s ⩽ t ⩽ T, (4.8)

where x(·) is the solution of (4.7) with the initial condition P (s)(x(s)− x0) = 0.

Proof. To simplify notations, we take s = 0. Due to (3.15), x is the solution of the
equation(4.7) if and oly if

x(t) = Φ(t, 0)P (0)x0 +

∫ t

0

Φ(t, ρ)PG−1TF (x(·))(ρ)dρ

+H−1QG−1F
(
x(·)

)
(t).

(4.9)

We show that the integral equation (4.9) has a unique solution on every interval
[0, T ] for fixed T > 0. Denote

S = I −H−1QG−1F
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to be a function from Lloc
p [0,∞) → Lloc

p [0,∞). Since H−1QG−1F is γ–Lipschitz

and F (θ) = θ, it follows that
∥∥H−1QG−1F

∥∥
Lp[0,t]

< γ < 1 for all t ⩾ 0. Hence, S
is invertible and

S−1 =

∞∑
k=0

(H−1QG−1F )k.

Moreover, for any z1, z2 ∈ Lloc
p [0,∞) we have∥∥S−1z1 − S−1z2

∥∥
Lp[0,t] ⩽

∞∑
k=0

γk∥z1 − z2∥Lp[0,t] =
1

1− γ
∥z1 − z2∥Lp[0,t], (4.10)

for all t ⩾ 0. This means that S−1 is a Lipschitz operator.The integral equation
(4.9) can be rewritten under an equivalent form

x(t) =S−1
(
Φ(·, 0)P (0)x0 +

∫ ·

0

Φ(·, ρ)PG−1TF (x(·))(ρ)dρ
)
(t), . (4.11)

Consider the operator U (·) : Lp[0, T ] → Lp[0, T ] given by(
U (x)

)
(t) =S−1

(
Φ(·, 0)P (0)x0 +

∫ ·

0

Φ(·, ρ)PG−1TF (x(·))(ρ)dρ
)
(t),

for t ∈ [0, T ] and x ∈ Lp[0, T ]. Let d ∈ N and δ = T
d . We prove that the

restriction of U on [0, δ] is a contractive mapping when d is large enough. Indeed,
put NT = sup0⩽s⩽t⩽T ∥Φ(t, s)∥. For any y, z ∈ Lp[0, δ], using (4.10) has

∥U (x)− U (y)∥Lp[0,δ] =

∥∥∥∥S−1
(
Φ(·, 0)P (0)x0 +

∫ ·

0

Φ(·, ρ)PG−1TF (y)(ρ)dρ
)

− S−1
(
Φ(·, 0)P (0)x0 +

∫ ·

0

Φ(·, ρ)PG−1TF (z)(ρ)dρ
)∥∥∥∥

Lp[0,δ]

⩽
1

1− γ

(∫ δ

0

∥∥∥∥∫ t

0

Φ(t, ρ)PG−1T
(
F (y)− F (z)

)
(ρ)dρ

∥∥∥∥p dt)1/p
⩽

NT

1− γ

(∫ δ

0

(∫ t

0

∥∥PG−1T
(
F (y)− F (z)

)
(ρ)
∥∥ dρ)pdt)1/p

Hölder
⩽

NT δ
1
q

1− γ

(∫ δ

0

(∫ t

0

∥∥PG−1T
(
F (y)− F (z)

)
(ρ)
∥∥p dρ)dt)1/p

⩽
NT δ

1
q

1− γ

(∫ δ

0

(∫ δ

0

∥∥PG−1T
(
F (y)− F (z)

)
(ρ)
∥∥pdρ)dt)1/p

⩽
NT δ

1
q+

1
p

1− γ

(∫ δ

0

∥∥PG−1T
(
F (y)− F (z)

)
(ρ)
∥∥pdρ)1/p

=
NT δ

1− γ

∥∥PG−1T
(
F (y)− F (z)

)∥∥
Lp[0,δ]

=
NT kT
1− γ

δ ∥y − z∥Lp[0,δ]
.

By choosing d such that NT kT

1−γ δ < 1 it is seen that U is contractive. As a conse-

quence, there exists an x ∈ Lp[0, δ] with P (0)
(
x(0)− x0

)
= 0 such that

x(t) = U (x)(t), for all t ∈ [0, δ],

i.e., x is a solution of (4.9) on [0, δ]. We now extend the solution x to the interval
[0, 2δ]. Every function ξ ∈ Lp[δ, 2δ] can be considered as a function ξ ∈ Lp[0, 2δ]

where ξ(t) = x(t) for t ∈ [0, δ] and ξ(t) = ξ(t) for t ∈ (δ, 2δ]. Thus we can define
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U on Lp[δ, 2δ] by putting U (ξ) = U (ξ). A similar way as above says that U
is contractive, which implies that the solution x can be extended to the interval
[δ, 2δ]. Continuing this way, we can solve x(·) on [0, T ].

We prove (4.8). It is seen that

∥x∥Lp[s,t] =
∥∥∥S−1

(
Φ(·, 0)P (s)x0 +

∫ ·

s

Φ(·, ρ)PG−1TF ([x(·)]s)(ρ)dρ
)∥∥∥

Lp[s,t]

⩽
1

1− γ

(
∥Φ(·, s)P (s)x0∥Lp[s,t]

+
∥∥∥∫ ·

s

Φ(·, ρ)PG−1TF ([x]s)(ρ)dρ
∥∥∥
Lp[s,t]

)
⩽

NT

1− γ

[(∫ t

s

∥P (s)x0∥p ds
)1/p

+
(∫ t

s

∥∥∥∥∫ τ

s

PG−1TF ([x]s)dρ

∥∥∥∥p dτ)1/p]
⩽

NT

1− γ

[
T

1
p ∥P (s)x0∥+

(∫ t

s

τ
p
q

∥∥PG−1TF ([x]s)
∥∥p
Lp[s,τ ]

dτ
)1/p]

.

Thus,

∥x∥Lp[s,t] ⩽
NTT

1
p

1− γ
∥P (s)x0∥+

NTT
1
q

1− γ

(∫ t

s

kp0∥x(·)∥
p
Lp[s,τ ]

dτ
)1/p

. (4.12)

By using the inequality in [9, Theorem 37] we have

∥x(·)∥Lp[s,t] ⩽ MT ∥P (s)x0∥ , s ⩽ t ⩽ T,

for a certain MT > 0. The proof is complete. □

In the following, let Assumptions 1 hold.

Definition 4.4 (See [23]). The trivial solution θ of (4.7) is said to be uniformly
Lp−stable if there exist constants M1,M2 > 0 such that

∥P (t)x(t; s, x0)∥Rn ⩽ M1 ∥P (s)x0∥Rn , t ⩾ s,
∥x(·; s, x0)∥Lp[s,∞) ⩽ M2 ∥P (s)x0∥Rn .

(4.13)

Theorem 4.5. Assume that the DAE (3.3) is index-1, exponentially stable and
H−1QG−1F (x) is locally γ-Lipschitz continuous in x with γ < 1. Further,

1. There exists a continuous function m : [0,∞) → R+ such that∥∥PG−1
[
TF (x)]t − PG−1

[
TF (y)

]
t

∥∥
Lp[0,T ]

⩽ mt∥x− y∥Lp[0,T ], (4.14)

for 0 < t ⩽ T < ∞ and x, y ∈ Lloc
p

(
[0,∞);Rn

)
.

2. lim sup
t→∞

mt < 1−γ
MC , with C=C(α) is defined in Remark 2.3 corresponding to

the function V (t) = U(t) = e−αt and α,M are defined in Theorem 4.2.

Then, the solution θ of the perturbed equation (4.7) is uniformly Lp– stable.

Proof. Let s ⩾ 0. By (4.14) and the locally γ-Lipschitz continuity ofH−1QG−1F (x)
in x with γ < 1, it is seen that for any x0 ∈ Rn, there exists the solution x(·) = x(·, s)
defined on [s,∞) with the initial condition P (t0)(x(s) − x0) = 0. The second as-
sumption of Theorem implies the existence of ξ ⩾ s such that

mt <
1− γ

MC
, for all t ⩾ ξ. (4.15)

By the variation of constants formula (4.9), when t ⩾ t0 one has

x(t) = Γ0(t) +

∫ t

s

Φ(t, ρ)PG−1
[
TF
(
[x]s
)
]ξ(ρ)dρ+H−1QG−1F ([x]s)(t), (4.16)
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where

Γ0(t) = Φ(t, s)P (s)x0 +

∫ t

s

Φ(t, ρ)PG−1πξTF ([x]s)(ρ)dρ.

The assumption of exponential stability of (3.3) says ∥Φ(t, ρ)∥ ⩽ Me−α(t−ρ), for
all 0 ⩽ ρ ⩽ t. Therefore,

∥Γ0(t)∥ ⩽ Me−α(t−s)∥P (s)x0∥+M

t∫
s

e−α(t−ρ)
∥∥PG−1πξTF ([x]s)(ρ)

∥∥ dρ.
Hence,

∥Γ0(·)∥Lp[s,∞) ⩽
M∥P (s)x0∥

(pα)
1
p

+M

[ ∞∫
s

e−ατ

τ∫
s

eαρ
∥∥PG−1πξTF ([x]s)(ρ)

∥∥ dρ
p

dτ

] 1
p

.

By Hardy’s inequality in Lemma 2.2 with the weight functions U(τ) = V (τ) = e−ατ

we have

∥Γ0(·)∥Lp[s,∞) ⩽
M∥P (s)x0∥

(pα)
1
p

+MC

[ ∞∫
s

∥∥PG−1πξTF ([x]s)(ρ)
∥∥p dρ] 1

p

⩽
M∥P (s)x0∥

(pα)
1
p

+m0MC ∥x(·)∥Lp[s,ξ]
⩽ M3 ∥P (s)x0∥ , (4.17)

where M3 = M

(pα)
1
p
+m0MξMC and Mξ in (4.8).

On the other hand, from (4.16) it follows that

x(t) = S−1
(
Γ0(·) +

∫ ·

s

Φ(·, ρ)PG−1[TF ([x]s)]ξ(ρ)dρ
)
(t),

which implies

∥x(·)∥Lp[s,t] ⩽
1

1− γ

(
∥Γ0(.)∥Lp[s,t]

+M

[ t∫
s

(
e−ατ

τ∫
s

eαρ
∥∥(PG−1[TF ([x]s)]ξ

)
(ρ)
∥∥dρ)p

dτ

] 1
p
)
.

Using Hardy’s inequality in Lemma 2.2 with the weight functions U(s) = V (s) =
e−αs and (4.17) yields

(1− γ)∥x(·)∥Lp[s,t] ⩽ ∥Γ0(t)∥Lp[s,∞) +MC

( t∫
s

∥∥(PG−1[TF ([x]s)]ξ
)
(ρ)
∥∥pdρ) 1

p

⩽ M3 ∥P (s)x(s)∥+MCmξ ∥x(·)∥Lp[s,t]
.

Thus,

∥x(·)∥Lp[s,t] ⩽
M3

1− γ −MCmξ
∥P (s)x0)∥ , t ⩾ s.

From this inequality it is seen that

∥x(·)∥Lp[s,∞) ⩽ M2 ∥P (s)x0∥Rn , (4.18)

where M2 = M3

1−γ−MCmξ
.
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We now estimate u = Px. Combiniing (3.16) with (4.6) we have

∥u(t)∥ ⩽ MK0∥u(s)∥+
∫ t

s

MK0e
−α(t−ρ)

∥∥PG−1TF ([x]s)(ρ)
∥∥dρ

Hölder
⩽ MK0∥u(s)∥+

MK0

(αq)
1
q

(∫ t

s

∥∥PG−1TF ([x]s)(ρ)
∥∥p dρ) 1

p

⩽ MK0∥u(s)∥+ms
MK0

(αq)
1
q

(∫ t

s

∥x(ρ)∥pdρ
) 1

p

⩽ M1∥u(s)∥,

for all t ⩾ s, where M1 = MK0

(
1 + M2ms

(αq)
1
q

)
. Thus, we get (4.13). The proof is

complete. □

In general, we can not expect the preservation of exponential stability under
small perturbation without some further assumptions. Indeed, we consider the
example

Example 4.6. Let

A =

(
1 0
0 0

)
, B =

(
−1 1
0 1

)
, and Σ(x, y)(t) =

(
0
1

)
1

1 + t

∫ t

0

y(s)ds.

Consider the equation

A

(
x′

y′

)
= B

(
x
y

)
+Σ(x, y). (4.19)

We see that

H(x, y) = (x,H1(y))
⊤ where H1(y) = y +

1

1 + t

∫ t

0

y(s)ds,

and H−1
1 (v)(t) = v(t) − 1

(1+t)2

∫ t

0
(1 + s)v(s)ds. The solution of the homogeneous

equation of (4.19) is (e−tx0, 0) which is exponentially stable. However, for f(x, y) =
δ(0, x)⊤, the perturbed system(

1 0
0 0

)(
x′

y′

)
=

(
−1 1
0 1

)(
x
y

)
+

(
0
1

)
1

1 + t

∫ t

0

y(s)ds+

(
0
δx

)
.

satisfies the equation

ẋ(t) = −(1 + δ)x(t) +
δ

(1 + t)2

∫ t

0

(1 + s)x(s)ds

y(t) = −δx(t) +
δ

(1 + t)2

∫ t

0

(1 + s)x(s)ds.

It is easy to show that the solution of this system is uniformly Lp-stable for −1 <
δ < 0 but not exponentially stable.

From Example 4.6 it is seen that to study the preservation of exponential sta-
bility, we need to add some further assumptions.

For any λ ∈ R, we endow Lp[s, t] with the new norm ∥ · ∥Lλ
p [s,t]

∥z∥p
Lλ

p [s,t]
=

∫ t

s

∥eλτz(τ)∥pdτ.
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Denote by H 1
p,λ(s) the set of the functions z ∈ H 1(s) with ∥z∥Lλ

p [s,∞) < ∞ and

by Bλ(s) the set of the functions z ∈ H 1(s) satisfying supt⩾s e
λt ∥z(t)∥ < ∞.

Theorem 4.7. Suppose that the DAE (3.3) is index-1, α–exponentially stable and
there exists 0 < λ < α such that H−1QG−1F (x) is locally γ-Lipschitz continuous
in x with γ < 1 in the norm ∥ · ∥Lλ

p [0,t]
. Suppose further that

1. There exists a continuous function m : [0,∞) → R+ such that∥∥PG−1
[
TF (x)]t−PG−1

[
TF (y)

]
t

∥∥
Lλ

p [0,T ]
⩽ mt∥x− y∥Lλ

p [0,T ], (4.20)

for all 0 < t ⩽ T < ∞ and x, y ∈ Lloc
p ([0,∞);Rn).

2. lim sup
t→∞

mt <
1−γ
MC , where C = C(α−λ) is defined in Remark 2.3 corresponding

to the function V (t) = U(t) = e−(α−λ)t and α,M are defined in Theorem 4.2.
3. The function S−1 = (I − H−1QG−1F )−1 acts continuously from H 1

p,λ(0) to

Bλ(0).
Then, the perturbed equation (4.7) is exponentially λ-stable, i.e., there is positive

constant M such that

∥x(t)∥ ⩽ Ke−λ(t−s)∥P (s)x0∥, t ⩾ s ⩾ 0,

where x(·) is the solution of (4.7) with the initial condition P (s)(x(s)− x0) = 0.

Proof. Let x(t), t ⩾ s be a solution of (4.7) with the initial condition P (s)(x(s) −
x0) = 0. For any t ⩾ s, we put φ(t) = eλ(t−s)x(t). Since x ∈ H 1(s), so is φ.
Moreover,

A(t)φ′(t) =
(
λA(t) +B(t)

)
φ(t) + Σ̃[φ]s(t) + F̃ ([φ]s)(t), (4.21)

where Σ̃[φ]s(t) = eλtΣ
(
e−λ·[φ]s

)
(t) and F̃ ([φ]s)(t) = eλtF

(
e−λ·[φ]s

)
(t).

It is seen that

G(t) = A(t)−
(
λA(t) +B(t)

)
Q(t) = A(t)−B(t)Q(t) = G(t),

and the invertibility of H = I − QG−1Σ is equivalent to the invertibility of H̃ =

I −QG−1Σ̃. Moreover,

H̃−1z(t) = eλtH−1(e−λ·z(·))(t), t ⩾ 0, z ∈ Lloc
p [0,∞),

which implies that the equation (4.21) is index-1. The homogeneous equation cor-
responding to (4.21) is

A(t)y′(t) =
(
λA(t) +B(t)

)
y(t) + (Σ̃[y]s

)
(t). (4.22)

Denote by Ψ(t, s) the Cauchy matrix of the equation (4.22). By the α–exponential
stability of (3.3), we see that

∥Ψ(t, s)∥ ⩽ Me−(α−λ)(t−s), t ⩾ s ⩾ 0.

Let T̃ := I + Σ̃H̃−1QG−1. The variation of constant formula says that

φ(t) = Ψ(t, s)P (s)x0 +

∫ t

s

Ψ(t, τ)PG−1T̃F̃ ([φ(·)]s)(τ)dτ

+ H̃−1QG−1F̃
(
[φ(·)]s

)
(t), t ⩾ s.

(4.23)

By the assumption of Theorem, the function H−1QG−1F (·) is locally γ-Lipschitz
in the norm ∥ · ∥Lλ

p [s,t]
, i.e., for all z1, z2 ∈ Lloc

p [0,∞),

∥H−1QG−1(F (e−λ·z1)− F (e−λ·z2))∥Lλ
p [0,t]

⩽γ∥e−λ·(z1 − z2)∥Lλ
p [0,t]
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=γ ∥z1 − z2∥Lp[0,t]
.

This inequality implies that

∥H̃−1QG−1(F̃ (z1)− F̃ (z2))∥Lp[0,t] = ∥H−1QG−1(F (e−λ·z1)−F (e−λ·z2))∥Lλ
p [0,t]

⩽ γ ∥z1 − z2∥Lp[0,t]
,

for all z1, z2 ∈ Lloc
p [0,∞), i.e., H̃−1QG−1F̃ is γ-locally Lipschitz.

Further, for any 0 ⩽ t ⩽ T we have∥∥PG−1[TF (e−λ·z)]t
∥∥p
Lλ

p [0,T ]
=

∫ T

t

∥∥eλτPG−1
[(
I +ΣH−1QG−1

)
F (e−λ·z)

]
t
(τ)
∥∥pdτ

=

∫ T

0

∥∥∥PG−1
[(

I + eλ·Σ
(
e−λ·[eλ·H−1(e−λ·QG−1)]

))
eλ·F (e−λ·z)

]
t
(τ)
∥∥∥p dτ

=

∫ T

0

∥∥∥PG−1
[(
I +Σ̃H̃−1QG−1

)
eλ·F (e−λ·z)

]
t(τ)

∥∥∥pdτ =
∥∥∥PG−1

[
T̃F̃ (z)

]
t

∥∥∥p
Lp[0,T ]

.

Combining with (4.20), we get

∥PG−1̃[TF̃ (z1)]t − PG−1[T̃F̃ (z2)]t∥Lp[0,T ] ⩽ mt ∥z1 − z2∥Lp[0,T ] , (4.24)

for all z1, z2 ∈ Lloc
p [0,∞).

Thus, all assumptions of Theorem 4.5 are satisfied, which implies that

∥φ(·)∥Lp[s,∞) ⩽ M2∥P (s)φ(s)∥. (4.25)

By using (4.24) and (4.25) we have

∞∫
s

∥∥∥ t∫
s

Ψ(t, τ)PG−1T̃F̃ ([φ]s)(τ)dτ
∥∥∥pdt ⩽ ∞∫

s

[
Me−(α−λ)(t−τ)

t∫
s

∥PG−1T̃F̃ ([φ]s)(τ)∥dτ
]p
dt

Hardy

⩽ CMp

∞∫
s

∥PG−1T̃F̃ ([φ]s)(τ)∥dτ
∥∥∥pdt ⩽ C(msMM2)

p∥P (s)φ(s)∥p,

where C = C(α−λ) is defined in Remark 2.3 corresponding to the function V (t) =
U(t) = e−(α−λ)t. This means that the function

h(t) = Ψ(t, s)P (s)x0 +

∫ t

s

Ψ(t, τ)PG−1T̃F̃ ([φ]s)(τ)dτ, t ⩾ s

belongs to H 1
p [s,∞) and

∥h∥Lp[s,∞) ⩽
[
msMM2C

1
p +

1

p
1
p (α− λ)

1
p

]
∥P (s)φ(s)∥ := N∥P (s)φ(s)∥.

From (4.23), it is clear that when t ⩾ s

S̃(φ)(t) : = φ(t)− H̃−1QG−1F̃ ([φ]s)(t)

= φ(t)− eλtH−1QG−1F (e−λ·[φ]s)(t) = h(t)

⇐⇒ e−λtφ(t)−H−1QG−1F (e−λ·[φ]s)(t) = e−λth(t)

⇐⇒ (I −H−1QG−1F )(e−λ·[φ]s)(t) = e−λth(t)

⇐⇒ S(e−λ·[φ]s)(t) = e−λth(t) ⇐⇒ φ(t) = eλtS−1(e−λ·[h]s)(t).



ROBUST STABILITY FOR IMPLICIT DIFFERENTIAL EQUATIONS 15

Note that if h ∈ H 1
p (s) then e−λ·h(·) ∈ H 1

p,λ(s). Since S−1 acts continuously from

H 1
p (0) to Bλ(0), it follows that

sup
t⩾s

∥φ(t)∥ = sup
t⩾0

∥∥eλtS−1e−λ·[h]s(t)
∥∥

=
∥∥S−1e−λ·[h]s

∥∥
Bλ(0)

⩽ C1

∥∥e−λ·[h]s
∥∥
Lλ

p [0,∞)

= C1 ∥h∥Lp[s,∞) ⩽ C1N∥P (s)φ(s)∥ := K∥P (s)φ(s)∥,

where C1 =
∥∥S−1

∥∥. Thus,
∥x(t)∥ ⩽ Ke−λ(t−s)∥P (s)x(s)∥, t ⩾ s ⩾ 0.

The proof is complete. □

Example 4.8. Consider the equation(
1 0
0 0

)(
x′(t)
y′(t)

)
=

(
−1 1
0 1

)(
x(t)
y(t)

)
+Σ(x, y)(t),

where

Σ(x, y)(t) =

(
0∫ t

0
y(s)ds

)
.

The solution (0, 0) of this equation is α-exponentially stable with α = 1,M = 1.
Let F = (F1, F2) : R2 → R2 be a Lipschitz function with the Lipschitz coefficient δ
and F (0, 0) = 0. Consider the perturbed equation(

1 0
0 0

)(
x′(t)
y′(t)

)
=

(
−1 1
0 1

)(
x(t)
y(t)

)
+Σ(x, y)(t) + F (x, y)(t), t ⩾ 0. (4.26)

By direct calculation we see that Q =

(
0 0
0 1

)
;G−1 =

(
1 −1
0 −1

)
;

H(x, y) = (x,H1(y))
⊤, where H1y = y +

∫ t

0

y(s)ds,

H−1
1 (v) = v − e−t

∫ t

0

esv(s)ds; H−1

(
x
y

)
=
(
x,H−1

1 (y)
)
,

H−1QG−1F = (0,−H−1
1 F2); PG−1TF = (F1 −H−1

1 F2, 0)
⊤.

Therefore,

∥∥H−1QG−1F (x, y)
∥∥
L

1
2
p [0,t]

=

(∫ t

0

|e s
2H−1

1 F2(x, y)(s)|pds
) 1

p

=

(∫ t

0

∣∣∣e s
2F2(x, y)(s)

∣∣∣pds) 1
p

+

(∫ t

0

∣∣∣e− s
2

∫ s

0

eτF2(x, y)(τ)dτ
∣∣∣pds) 1

p

⩽ δ

(∫ t

0

(
e

s
2 ∥(x, y)(s)∥

)p
ds

) 1
p

+ δ

[∫ t

0

(
e−

s
2

∫ s

0

eτ ∥(x, y)(τ)∥ dτ
)p

ds

] 1
p

Hardy

⩽ δ
(
1 + C

) ∥∥∥∥(xy
)∥∥∥∥

L
1
2
p [0,t]

,
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where C = C( 12 ) is defined in Hardy inequality (2.2) corresponding to the function

V (t) = U(t) = e−
t
2 . Furthermore

∥∥PG−1[TF (x, y)]t
∥∥
L

1
2
p [0,T ]

=

(∫ T

t

∥∥e s
2PG−1[TF (x, y)(s)]t

∥∥p ds) 1
p

=

(∫ T

0

|e s
2F1(x, y)(s)|pds

) 1
p

+

(∫ T

0

(
e

s
2 |H−1

1 F2(x, y)(s)|
)p

ds

) 1
p

⩽ δ(2 + C)

∥∥∥∥(xy
)∥∥∥∥

L
1
2
p [0,T ]

.

Thus, with δ such that δ < 1
2C(2+C) , all assumptions of Theorem 4.7 are satisfied,

which implies that (4.26) is exponentially stable.

5. Bohl-Perron type theorem

We now pass to the study of the Bohl-Perron’s Theorem for implicit differential
equations with causal operators. That is we investigate the relation between the
exponential stability of homogeneous equation (3.3) in Lyapunov sense and the
boundedness of solutions of non homogeneous equation (3.2). We keep Assumption
1 to this section. For any β ⩾ 0 and s ⩾ 0, define the weighted space

Lβ
p

(
s
)
=

{
q ∈ Lloc

p ([s,∞));Rn) :
∫∞
s

∥eβtPG−1T[q]s(t)∥pdt < ∞
and

∫∞
s

∥eβtQG−1T[q]s(t)∥pdt < ∞

}
.

Endow Lβ
p

(
s
)
with the norm

∥q∥p
Lβ

p (s)
=

∫ ∞

s

(
∥eβtPG−1T[q]s(t)∥p + ∥eβtQG−1T[q]s(t)∥p

)
dt.

Lemma 5.1. For any β ⩾ 0 and s ⩾ 0, Lβ
p (s) is a Banach space.

Proof. We need only proving the positive definiteness of the norm ∥ · ∥p
Lβ

p (s)
. By

noting I +H−1QG−1Σ = H−1, it follows that T := I + ΣH−1QG−1 is invertible
by Lemma 2.4. Let q ∈ Lβ

p (s) with ∥q∥p
Lβ

p (s)
= 0, which implies G−1T[q]s(t) = 0 for

almost everywhere t ∈ [s,∞). Since G and T are invertible, q = 0.
The proof is complete. □

For any s ⩾ 0, by formula (3.15), the solution of (3.2) with the initial P (s)x(s) =
0 is given by x(t) = Fsf , where

Fsf(t) =

∫ t

s

Φ(t, s)PG−1T[f ]s(s) ds+ (H−1QG−1[f ]s)(t), t ⩾ s. (5.1)

Theorem 5.2. Suppose that β < α. If the system (3.3) is α-exponentially stable,
then for every f ∈ Lβ

p (0), the solution of (3.2) with the initial P (0)x(0) = 0 is in

H 1
p,β(0).

Proof. From the exponential stability of (3.3) we have∥∥∥∥∫ •

0

Φ(• , s)PG−1Tf(s) ds
∥∥∥∥Lβ

p [0,∞) =

(∫ ∞

0

∥∥∥∥eβt ∫ t

0

Φ(t, s)PG−1(Tf)(s) ds
∥∥∥∥pdt

) 1
p
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⩽ M

(∫ ∞

0

[
eβt
∫ t

0

e−α(t−s)
∥∥PG−1Tf(s)

∥∥ ds

]p
dt

) 1
p

= M

(∫ ∞

0

[
e−(α−β)t

∫ t

0

eαs
∥∥PG−1Tf(s)

∥∥ ds

]p
dt

) 1
p

.

By using again Hardy’s inequality with U(t) = V (t) = e−(α−β)t we obtain

∥∥∥∥∫ •

0

Φ(• , s)PG−1Tf(s) ds
∥∥∥∥
Lβ

p [0,∞)

⩽ MC

(∫ ∞

0

∥∥∥e−(α−β)seαsPG−1Tf(s)
∥∥∥pds) 1

p

⩽ MC

(∫ ∞

0

∥∥eβsPG−1Tf(s)
∥∥p ds) 1

p

< ∞.

Next, note that

QG−1T = QG−1
(
I +ΣH−1QG−1

)
= QG−1 +QG−1ΣH−1QG−1

= QG−1 − (I −QG−1Σ)H−1QG−1 +H−1QG−1 = H−1QG−1.

Therefore, the assumption f ∈ Lβ(s) implies that∥∥H−1QG−1f
∥∥
Lβ

p [0,∞)
=
(∫ ∞

0

∥∥eβtQG−1Tf(t)
∥∥pdt) 1

p

< ∞.

Thus, x ∈ H 1
p,β [0,∞). The proof is complete. □

Denote by L (s) the space of linear continuous operators from Lγ
1(s) to Lβ

p [s,∞),
s ⩾ 0. To prove the inverse relation, we need the following lemma.

Lemma 5.3. Let γ, β ⩾ 0. If F0 ∈ L (0) then Fs ∈ L (s) for any s ⩾ 0. Further,

sup
s⩾0

∥Fs∥L (s) := k < ∞. (5.2)

Proof. Firstly, we show that F0 is bounded. By assumption, for any f ∈ Lγ
1(0),

the solution x(t) associated to f of (3.2) with the initial condition P (0)x(0) = 0 is
in Lβ

p (0). We define a family of operators {Vt}t⩾0 as following:

Vt : Lγ
1(0) −→ Lβ

p (0)

f 7−→ Vt(f) = πtF0(f).

From the assumption of Lemma, we have

sup
t⩾0

∥Vtf∥Lβ
p (0)

= sup
t⩾0

(∫ t

0

∥∥eβτF0f(τ)
∥∥p dτ) 1

p

=
(∫ ∞

0

∥∥eβtF0f(t)
∥∥p dt) 1

p

< ∞,

for any f ∈ Lγ
1(0). Using Uniform Boundedness Principle, we see that

∥F0∥L (0) = sup
t⩾0

∥Vt∥L (0) := k < ∞. (5.3)

Let f be arbitrary function in Lγ
1(s). By variation of constants formula, the solution

x(t), t ⩾ s of the Cauchy problem (3.2) with the initial condition P (s)x(s) = 0
corresponding to f is of the form

x(t) =

∫ t

s

Φ(t, τ)PG−1T[f ]s(τ)dτ +
(
H−1QG−1[f ]s

)
(t), t ⩾ s.
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It is easy to see that the function

z(t) = [x(t)]s, t ⩾ 0,

is the solution of the Cauchy problem (3.2) associated with [f ]s with the initial
condition P (0)z(0) = 0. Therefore, from (5.3) we have

∥x(·)∥Lβ
p [s,∞) = ∥z(·)∥Lβ

p [0,∞) ⩽ k∥[f ]s∥Lγ
1 (0)

= k∥f∥Lγ
1 (s)

.

Thus,
∥Fs∥L (s) ⩽ k, for all s ⩾ 0.

The proof is complete. □

Theorem 5.4. Suppose that for pγ ⩽ β we have

(1) The unique solution of the Cauchy problem (3.2) with the initial condition
P (s)x(s) = 0, associated with every f ∈ Lγ

1(s) is in Lβ
p (s).

(2) The operator QH−1P̂ acts continuously on Bγ(0).
(3) The operator PG−1Σ satisfies the condition

•
∥∥∥e−ε·PG−1ΣH−1P̂ z(·)

∥∥∥
Lβ

p [0,t]
⩽ K1 ∥z(·)∥Lβ

p [0,t]
, for all z ∈ Lloc[0,∞), (5.4)

• sup
t⩾0

e−εt
∥∥(P ′ +PG−1B

)
(t)
∥∥ ⩽ K1, where ε= β − pγ,K1 > 0. (5.5)

Then, the index-1 DAE (3.3) is exponentially stable.

Proof. With an arbitrary s ⩾ 0, for any σ > 0 and v ∈ Rn, let

f(t) = e−γtA(t)v1[s,s+σ](t).

It is clear that QG−1[f ]s = 0, T[f ]s = [f ]s and

∥f∥Lγ
1 (s)

=

∫ ∞

s

eγt
∥∥PG−1Te−γ·1[s,s+σ](·)A(·)v(t)

∥∥dt =∫ s+σ

s

∥P (t)v∥ dt ⩽ σK0∥v∥Rn .

This means that f ∈ Lγ
1(s). Let x(t) be the solution of (3.2) associated to f with

the initial condition P (s)x(s) = 0. It follows from (3.15) that for all t ⩾ s

x(t) =

∫ t

s

Φ(t, τ)PG−1T[f ]s(τ)dτ =

∫ t

s

Φ(t, τ)PG−1[f ]s(τ)dτ

=

∫ (s+σ)∧t

s

e−γτΦ(t, τ)P (τ)vdτ,

Thus, by (4.5) we have

P (t)x(t) ==

∫ (s+σ)∧t

s

e−γτΦ0(t, τ)P (τ)vdτ,

Hence, combining with (5.2) yields(∫ ∞

s

∥∥∥eβt∫ (s+σ)∧t

s

e−γτΦ0(t, τ)P (τ)vdτ
∥∥∥pdt) 1

p

= ∥Px(·)∥Lβ
p (s)

⩽ K0 ∥x(·)∥Lβ
p (s)

⩽ kK0∥f∥Lγ
1 (s)

⩽ kσK2
0 ∥v∥ .

Since Φ0(t, s), t ⩾ s is the solution of (3.14), limτ↓s Φ0(t, τ) = Φ0(t, s). Therefore,
dividing both sides of this inequality by σ and letting σ → 0 obtain(∫ ∞

s

∥∥eβtΦ0(t, s)P (s)v
∥∥p dt) 1

p

⩽ kK2
0e

γs ∥P (s)v∥ . (5.6)
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Denote by y(·) the solution of the equation (3.3) with the initial condition
P (s)(y(s) − x0) = 0. Put u = Py then u(·) = Φ0(·, s)P (s)x0. By virtue of the
first equation of (3.11) we have∥∥e−ε·u′(·)

∥∥
Lβ

p [s,t]
⩽
∥∥e−ε·(P ′ + PG−1B)u(·)

∥∥
Lβ

p [s,t]
+
∥∥∥e−ε·PG−1ΣH−1P̂ [u]s

∥∥∥
Lβ

p [s,t]
.

It is seen that

∥e−ε·(P ′ + PG−1B)u(·)∥Lβ
p ([s,t])

=

(∫ t

s

∥∥eβτe−ετ (P ′ + PG−1B)u(τ)
∥∥p dτ) 1

p

⩽ K1

(∫ t

s

∥∥eβτu(τ)∥∥p dτ) 1
p

⩽ kK2
0K1e

γs ∥P (s)x0∥ ,

and∥∥∥(e−ε·PG−1ΣH−1P̂ [u(·)]s
∥∥∥
Lβ

p ([0,t])
⩽ K1 ∥[u(·)]s∥Lβ

p ([0,t])

= K1

(∫ t

s

∥∥eβτΦ0(τ, s)P (s)x0

∥∥p dτ) 1
p

⩽ kK2
0K1e

γs ∥P (s)x0∥ .

Thus, ∥∥e−ε·u′(·)
∥∥
Lβ

p [s,∞)
⩽ K2e

γs ∥P (s)x0∥ . (5.7)

where K2 = 2kK2
0K1. On the other hand,

∥u′(t)∥ = lim
h↓0

∥∥∥∥u(t+ h)− u(t)

h

∥∥∥∥ ⩾ lim
h↓0

∣∣∣∣∥u(t+ h)∥ − ∥u(t)∥
h

∣∣∣∣ = ∣∣∣∣d ∥u(t)∥dt

∣∣∣∣ .
Therefore, from γ = β − ε and 1

p + 1
q = 1 we have∥∥eγtu(t)∥∥p = ∥eγsu(s)∥p +

∫ t

s

d ∥eγτu(τ)∥p

dτ
dτ

= ∥eγsu(s)∥p + pγ

∫ t

s

∥eγτu(τ)∥p dτ +

∫ t

s

epγτ ∥u(τ)∥p−1 d ∥u(τ)∥
dτ

dτ

⩽ ∥eγsu(s)∥p + pγ

∫ t

s

∥eγτu(τ)∥p dτ +

∫ t

s

e(β−ε)τ ∥u(τ)∥p−1 ∥u′(τ)∥ dτ

= ∥eγsu(s)∥p + pγ

∫ t

s

∥eγτu(τ)∥p dτ +

∫ t

s

e
β
q τ ∥u(τ)∥p−1

e
β
p τ
∥∥e−ετu′(τ)

∥∥ dτ
Hölder
⩽ ∥eγsu(s)∥p + pγ

∫ t

s

∥eγτu(τ)∥p dτ

+

(∫ t

s

eβτ ∥u(τ)∥q(p−1)
dτ

) 1
q
(∫ t

s

eβτ
∥∥e−ετu′(τ)

∥∥p dτ) 1
p

.

By using (5.6) and (5.7) we get∥∥eγtu(t)∥∥p ⩽
(
1 + pγkpK2p

0

)
∥eγsu(s)∥p +

(
kK2

0e
γs ∥u(s)∥

) p
q K2e

γs ∥u(s)∥
= (K3)

pepγs ∥u(s)∥p ,

where (K3)
p = 1 + pγkpK2p

0 + (kK2
0 )

p
q K2. Thus

∥u(t)∥ ⩽ K3e
−γ(t−s) ∥u(s)∥ , for all t ⩾ s. (5.8)
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On the other hand, by assumption, the operator QH−1P̂ acts continuously on
Bγ(0). Therefore, with v = Qy we have

sup
t⩾s

eγt ∥v(t)∥ = sup
t⩾s

eγt
∥∥∥QH−1P̂ [u(·)]s(t)

∥∥∥ ⩽
∥∥∥QH−1P̂

∥∥∥ sup
t⩾s

eγt ∥u(t)∥

= K3

∥∥∥QH−1P̂
∥∥∥ eγs ∥u(s)∥ for all t ⩾ s.

Or,

∥v(t)∥ ⩽ K3

∥∥∥QH−1P̂
∥∥∥ e−γ(t−s) ∥u(s)∥. (5.9)

Combining (5.8) and (5.9) obtains

∥y(t)∥ ⩽ K4e
−γ(t−s) ∥P (s)x0∥ , for all t ⩾ s,

where K4 = K3(∥QH−1P̂∥+ 1).
The proof is complete. □

Acknowledgments. Author would like to thank Vietnam Institute for Advance
Study in Mathematics (VIASM) for supporting and providing a fruitful research
environment and hospitality for her. She would like to also thank the Vietnam
National Foundation for Science and Technology Development (NAFOSTED) under
grant number 101.03-2021.29 for supporting for her work.

References

[1] L. Barreira, C. Valls, Nonautonomous difference equations and a Perron-type theorem, Bull.
Sci. math., 136(2012), 277-290.

[2] T. Berger, Robustness of stability of time-varying index-1 IDEs, Math. Control Signals Syst.,

26(2014), 403-433.
[3] E. Braverman, I.M. Karabash, Bohl-Perron type stability theorems for linear difference equa-

tions with infinite delay, J. Difference Equ. Appl., 18(2012), no. 5, 909-939.
[4] M. Bracke, On stability radii of parametrized linear differential-algebraic systems. Ph.D the-

sis, University of Kaiserslautern 2000.

[5] K.E. Brenan, S.L. Campbell, L.R. Petzold, Numerical solution of initial value problems in
differential algebraic equations. SIAM, Philadelphia 1996.

[6] C. J. Chyan, N.H. Du and V.H. Linh, On data dependence of exponential stability and

stability radii for linear time-varying differential-algebraic systems, Journal of Differential
Equations, 245(2008), 2078–2102.

[7] C. Corduneanu, Functional equations with causal operators. Taylor & Francis e-Library 2005.

[8] M.R. Crisci, V.B. Kolimanovskll, E. Russo, A. Vecchio, On the exponential stability of dis-
crete Volterra systems, Journal of Difference Equations and Applications, 6(2000), 667-480.

[9] S. S. Dragomir, Some Gronwall type inequalities and applications. Nova Science Publishers,

Inc., Hauppauge, NY 2003.
[10] L. Yu, Daleckii, M. G. Krein, Stability of Solutions of Differential Equations in Banach

Space. Amer. Math. Soc., Providence, RI 1971.
[11] N.H. Du, V. H. Linh and N.T.T. Nga, On stability and Bohl exponent of linear singular

systems of difference equations with variable coefficients, J. Differ. Equ. Appl., 22(2016),

1350-1377.
[12] N. H. Du, V. H. Linh, Stability radii for linear time-invarying differential-equations with

respect to dynamic perturbations, J. Differential Equations, 230(2006), 579-599.

[13] N. H. Du, V. H. Linh, V. Mehrmann, and D. D.Thuan, Stability and robust stability of linear
time-invariant delay differential-algebraic equations, SIAM J. Matrix Anal. Appl., 34(2013),

1631-1654.

[14] E. Eich-Soellner, C. Führer, Numerical methods in multibody dynamics. Teubner, Stuttgart
1998.

[15] M. Gil, The Lp-version of the generalised Bohl-Perron principle for vector equations with

delay, Int. J. Dynamical Systems and Differential Equations, 3 (2011), no. 4, 448-458.



ROBUST STABILITY FOR IMPLICIT DIFFERENTIAL EQUATIONS 21

[16] M. Gil, Generalized Bohl-Perron principle for differential equations with delay in a Banach

spaces, Electronic Journal of Differential Equations, 137(2013), 7 pp.

[17] E. Griepentrog, R. März, Differential-algebraic equations and their numerical treatment.
Teubner-Texte zur Mathematik, Leibzig 1986.

[18] N.T. Ha, N.H. Du and D.D. Thuan, On data dependence of stability domains, exponential

stability and stability radii for implicit linear dynamic equations, Math. Control Signals Sys.,
28(2016), no. 2, 1-28.

[19] D. Hinrichsen and A. J. Pritchard, Stability radii of linear systems, Systems Control Lett.,

7(1986), 1-10.
[20] Y. Hino and S. Murakami, Total Stability and Uniform Asymptotic Stability for Linear

Volterra Equations, J. London Math. Soc., 43(1991), no. 2, 305-312.

[21] D. Hinrichsen, N.K. Son and P.H.A. Ngoc, Stability radii of higher order positive difference
systems, Systems Control Lett., 49(2003), 377-388.

[22] D. Hinrichsen and N.K. Son, Stability radii of positive discrete-time systems under affine
parameter perturbations, Internat. J. Robust Nonlinear Control, 8(1998), 1169-1188.

[23] B. Jacob, A formula for the stability radius of time-varying systems, J. Differential Equations,

142(1998), 167-187.
[24] P. Kunkel, V. Mehrmann, Differential-Algebraic Equations, Analysis and Numerical Solu-

tion. EMS Publishing House, Zürich, Switzerland 2006.
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