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Abstract. In this paper, we firstly provide several new characterizations of
quasi-Frobenius rings by using some generalized injectivity of rings with certain
chain conditions. Namely, we prove among other results, that: (1) A ring R is
quasi-Frobenius if and only if R is right C11, right minfull with ACC on right
annihilators; (2) A ring R is quasi-Frobenius if and only if R is two-sided min-CS
with ACC on right annihilators in which Soc(RR) ≤e RR; (3) A ring R is quasi-
Frobenius if and only if R is right Johns left C11; (4) A ring R is quasi-Frobenius
if and only if R is quasi-dual two-sided C11 with ACC on right annihilators. Mo-
roever, we give more characterizations of quasi-Frobenius rings. For example, it
is shown that a ring R is quasi-Frobenius if and only if R is a left P -injective left
IN -ring with right RMC and Z(RR) = Z(RR). Also, we prove that if R is a right
duo, right QF -3+ left quasi-duo ring satisfying ACC on right annihilators, then R
is quasi-Frobenius. In this paper, several known results on quasi-Frobenius rings
are reproved as corollaries.

1. Introduction

Throughout this paper, all rings R are associative with identity and all modules
are unitary right R-module. The notations N ≤e M and N ≤⊕ M mean that N is
an essential submodule and a direct summand, respectively. Let M be an R-module.
Recall that the singular submodule Z(M) of M is defined by

Z(M) = {m ∈M | mI = 0 for some essential right ideal I of R}.

The Goldie torsion submodule Z2(M) of M (also known as the second singular
submodule of M) is defined to be the submodule of M which contains Z(M) such
that Z(M/Z(M)) = Z2(M)/Z(M). The module M is called singular if Z(M) = M
and is called nonsingular if Z(M) = 0 (equivalently, Z2(M) = 0). Recall that
M/Z2(M) is a nonsingular module. For a ring R, we denote by J(R) the Jacobson
radical of R. If X is a subset of a ring R, the right (left) annihilator in R is denoted
by r(X) (l(X)).

The notion of self-injective rings is generalized by many authors. In [12], let R be
a ring, then
• R is called right P -injective (resp., 2-injective) ring if every R-homomorphism

from a principal (resp., 2-generated) right ideal of R extends to an endomorphims
of R.
• R is said to be right mininjective if every R-homomorphism from a minimal

right ideal of R extends to an endomorphims of R.

Key words and phrases. automorphism-invariant ring, C11-rings, mininjective ring, IN -ring, P -
injective ring, quasi-Frobenius ring.
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• R is called right simple-injective if every R-linear map with simple image from
a right ideal to R extends to R.
• R is called right dual if rl(T ) = T for all right ideals T of R.
• R is called right minfull if it is semiperfect right minijective and Soc(eR) 6= 0

for each local idempotent e of R.
• R is called right min-CS if every minimal right ideal is essential in a direct

summand.
• R is said to be left IN ring if r(T ∩ T ′) = r(T ) + r(T ′) for all left ideals T and

T ′ of R .
A ring R is called right GP -injective if for each 0 6= a ∈ R, there exists n ∈ N

such that an 6= 0 and lr(an) = Ran ([2]).
Recall that a module M is said to be a C11-module if every submodule of M has a

complement which is a direct summand ([21]). A ring R is called a right C11-ring if
RR is a C11-module. Clearly, every CS-module satisfies the C11-condition. However,
the converse is not true in general (see [21, p. 1814]).

A submodule N of a module M is said to be an automorphism-invariant submod-
ule if f(N) ⊆ N for every automorphism f of M . A module is called automorphism-
invariant if it is an automorphism-invariant of its injective hull ([14]). A ring R is
called right automorphism-invariant if RR is automorphism-invariant.

A module M is said to be satisfy the restricted minimum condition (briefly, RMC)
if for every essential submodule N of M , M/N is an artinian module. A ring R is
said to be have right RMC if R satisfies the RMC as a right R-module.

Recall that a ring R is quasi-Frobenius if R is two-sided artinian and two-sided
self-injective. Quasi-Frobenius rings play an important role in the theory, and many
interesting characterizations can be found in ([12]).

In Section 2, we provide several new characterizations of quasi-Frobenius rings
by using some generalized injectivity of rings satisying certain chain conditions. We
first prove that a right C11, right minfull ring satisfying ACC on right annihilators
is quasi-Frobenius. We prove that a two-sided min-CS ring with ACC on right
annihilators in which Soc(RR) ≤e RR is quasi-Frobenius. It is also shown that a left
AGP -injective two-side min-CS ring satisfying ACC on left annihilators is quasi-
Frobenius We prove that a right Johns left C11-ring is quasi-Frobenius. Note that
in this section, some known results on quasi-Frobenius are obtained as corollaries.

In section 3, quasi-Frobenius rings are characterized via two-side C11-rings. We
prove that a ring is quasi-Frobenius if and only if it is quasi-dual two-side C11 with
ACC on right annihilators. Moroever, it is shown that a right artinian two-side
C11-ring R in which Soc(RR) = Soc(RR) is quasi-Frobenius.

Section 4 is devoted to automorphism-invariant rings and their generalizations. In
this section, it is shwon among others results that every left automorphism-invariant
ring R with ACC on right annihilators in which Soc(RR) is an essential right ideal
is quasi-Frobenius. We prove also that every two-side pseudo-c∗-injective two-side
C11-ring with ACC on right annihilators is quasi-Frobenius.

In section 5, we provide more characterizations of quasi-Frobenius rings. Firstly,
we prove that a left perfect right simple-injective ring such that for every injective
right R-module M , Z2(M) is projective, is quasi-Frobenius. Also, it is shown that
a two-sided minfull left (or right) pseudo-coherent ring R for which J(R) is left or
right T -nilpotent is quasi-Frobenius. Moroever, we prove that a left P -injective left
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IN -ring with right RMC is quasi-Frobenius if and only if Z(RR) = Z(RR). This
result extends Theorem 13((1) ⇔ (2)) in [10] and Proposition 18.6 in [5]. As a
direct consequence of the last result, it is shown that a two-sided P -injective left
IN -ring with right RMC is quasi-Frobenius. Finally, we show that if R is a right
duo, right QF -3+ left quasi-duo ring satisfying ACC on right annihilators, then R
is quasi-Frobenius.

2. Quasi-Frobenius rings via the mimimal ideals

It is obvious that a quasi-Frobenius ring is right minfull with ACC on right
annihiltors. However Examples 2.5 and 6.41(1) in [12] show that the converse is not
true in general. In the next theorem, we provide some conditions which force a right
minfull ring with ACC on right annihiltors to be quasi-Frobenius. We first prove
the following lemma.

Lemma 2.1. Let R be a right C11 right minifull ring. Then Soc(eR) is a minimal
right ideal for every local idempotent e of R and R is right finitely cogenerated.

Proof. Since R is right minfull, RR satisfies the C2-condition by [12, Lemma 1.46
and Theorem 3.12]. Now, let e be a local idempotent of R. As RR is a C11-
module, then by [21, Theorem 4.3], eR is also a C11-module. Hence, since eR is
indecomposable, it follows from [21, Proposition 2.3(iii)] that eR is uniform. Note
that Soc(eR) 6= 0. Therefore, Soc(eR) is a minimal right ideal. On the other hand,
since R is semiperfect, there exits a decomposition RR = e1R ⊕ e2R ⊕ .... ⊕ enR
where each ei is a local idempotent. Therefore, by what we shown above, Soc(eiR)
is a minimal right ideal and Soc(eiR) ≤e eiR. From this, we deduce that Soc(RR)
is a finitely generated right ideal and Soc(RR) ≤e RR. Therefore, R is right finitely
cogenerated. �

Theorem 2.2. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is right minfull with ACC on right annihilators and every complement

right ideal is a right annihilator;
(3) R is right C11 right minfull with ACC on right annihilators;
(4) R is right C11 right minfull with right RMC.

Proof. (1)⇒ (2), (4) are clear.
(2) ⇒ (3) Being right minfull, R is left Kasch by [12, Theorem 3.12]. But every

complement right ideal is a right annihilator. Then R is a right C11-ring by [24,
Theorem 10].

(3) ⇒ (1) By Lemma 2.1, R is right finitely cogenerated. In addition, since R
is right mininjective, Soc(RR) ⊆ Soc(RR) by [12, Theorem 2.21]. Consequently,
Soc(RR) ≤e RR, and so J(R) ⊆ Z(R). But R is semiperfect. Then J(R) = Z(R)
Note that R has ACC on right annihilators. Therefore, in view of [12, Lemma 3.29],
J(R) is nilpotent, from which it follows that R is semiprimary. Hence, by Lemma
2.1 and [22, Corollary 7], Soc(Re) is a minimal left ideal for every local idempotent e
of R. In addition, since R is right minfull, we infer from [12, Theorem 3.12] that R is
right Kasch. So, using [12, Theorem 3.7(3)(a)], we deduce that Soc(RR) = Soc(RR).
Now, we claim that R is left mininjective. To see this fact, let e be a local idempotent
of R. By Lemma 2.1, Soc(eR) is a minimal right ideal. Therefore, being semiperfect,
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R is left mininjective by [12, Theorem 3.2(1)]. Finally, since R is a right mininjective
ring with ACC on right annihilators in which Soc(RR) ≤e RR, R is quasi-Frobenius
by [12, Theorem 3.31].

(4) ⇒ (1) By Lemma 2.1, R is right finitely cogenerated. Thus, by hypothesis,
R/Soc(RR) is right noetherian, and so R has ACC on right annihilators. Therefore,
R is quasi-Frobenius by (3). �

Corollary 2.3. The following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is a right minfull right C11-ring and Z(RR) is a noetherian right R-module.

Proof. (1)⇒ (2) is clear.
(2)⇒ (1) Assume that R has the stated condition. Then by Lemma 2.1, Soc(RR)

is a finitely generated right ideal and essential in RR. So, using [12, Lemma 6.43],
we deduce that R/Z(RR) is right noetherian. Note that Z(RR) is a noetherian right
R-module. Hence, R is right noetherian, which implies that R has ACC on right
annihilators. Therefore, according to Theorem 2.2(2), R is quasi-Frobenius. �

Recall a ring R is called right (left) QF -2 if R is a direct sum of unform right
(left) ideals.

Corollary 2.4 ([18, Theorem 4.4]). If R is a QF -2 ring with ACC on right anni-
hilators in which Soc(RR) ≤e RR, then R is quasi-Frobenius.

Proof. By [18, Lemma 4.3], R is semiperfect and Soc(Re) 6= 0 for every local idem-
potent e ∈ R. Since R is left QF -2, Re is uniform, from which it follows that
Soc(Re) is simple. In addition, since Soc(RR) ≤e RR, Soc(RR) ⊆ Soc(RR). So, R
is right mininjective by [12, Proposition 3.5] and consequently, R is right minfull.
Note that R is a right C11-ring (being right QF -2) by [21, Theorem 2.4]. Therefore,
the result follows from Theorem 2.2(2). �

Corollary 2.5. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is right C11 right GP -injective with ACC on right annihilators;
(3) R is a right artinian right mininjective right CS-ring;
(4) R is a right artinian right mininjective right C11-ring.

Proof. (1)⇒ (2) is clear.
(2)⇒ (1) follows from [2, Theorem 3.7] and Theorem 2.2(2).
(1)⇔ (3)⇔ (4) follows from Theorem 2.2(2). �

Corollary 2.6. The following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is right C11, left minannihilator and right artinian.

Theorem 2.7. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is two-sided min-CS with ACC on right annihilators in which Soc(RR)

is essential in RR.
(3) R is left AGP -injective two-sided min-CS with ACC on left annihilators;
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Proof. (1)⇒ (2), (3) are clear.
(2) ⇒ (1) Since R has ACC on right annihilators and Soc(RR) ≤e RR, R is

semiprimary by [18, Lemma 4.3]. Thus, R is left Kasch by [12, Lemma 4.2]. As R
is left min-CS, then it follows from [12, Lemma 4.5] that Soc(Re) is simple for all
local idempotent e ∈ R. On the other hand, the fact that Soc(RR) ≤e RR implies
that Soc(RR) ⊆ Soc(RR). Hence, being semiperfect, R is right mininjective by [12,
Proposition 3.5], from which it follows that R is right minfull. Thus, using [12,
Theorem 3.12], R is right Kasch. Since R is semiperfect right min-CS, we infer from
[12, Lemma 4.5] that Soc(eR) is simple for all local idempotent e ∈ R for. But we
have already seen that Soc(Re) is simple for all local idempotent e ∈ R. Then, since
R is right Kasch, it follows from [12, Theorem 3.7(3)] that Soc(RR) = Soc(RR).
So, by [12, Proposition 3.5] again, R is left mininjective. Finally, being a two-sided
mininjective ring with ACC on right annihilators in which Soc(RR) ≤e RR, R is
quasi-Frobenius by [12, Theorem 3.31].

(3)⇒ (1) Being left AGP -injective with ACC on left annihilators, R is semipri-
mary by [25, Corollary 1.6]. On the other hand, since R is left AGP -injective,
J(RR) = Z(RR) by [25, Lemma 1.3], and so Soc(RR) ⊆ Soc(RR). This implies that
Soc(RR) ≤e RR. Therefore, according to (2)⇒ (1), R is quasi-Frobenius.

�

A module M is called ef-extending if every closed submodule which contains
essentially a finitely generated submodule is a direct summand of M .

Corollary 2.8 ([18, Theorem 4.7]). Then following conditions are equivalent for a
ring R:

(1) R is quasi-Frobenius;
(2) R is right ef -extending with ACC on right annihilators in which Soc(RR) ≤e

RR.

Proposition 2.9. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is a right noetherian left AGP -injective two-sided ef -extending ring.

Proof. (1)⇒ (2) is clear.
(2) ⇒ (1) Since R is right noetherian, R contains no infinite orthogonal sets of

idempotents. Hence, RR = Rei ⊕ ...⊕Ren, where each Rei is indecomposable. As,

RR is an ef -extending module, each Rei is uniform. Thus, RR has finite uniform
dimension. So, using [14, Corollary 1.2], we deduce that R is semilocal. On the other
hand, being right noetherian left AGP -injective, J(R) is nilpotent by [14, Theorem
2.1]. Therefore, R is semiprimary, from which it follows that R is right artinian.
So, R has ACC on left annihilators. Therefore, the claim follows from Theorem
2.7(3). �

Theorem 2.10. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is left C11 right cogenerator with ACC on right annihilators.

Proof. (1)⇒ (2) is clear.
(2)⇒ (1) As R has ACC on right annihilators, then it has enough idempotents.

So we can write R = Re1 ⊕ Re2 ⊕ ... ⊕ Ren, where {ei}ni=1 is an orthogonal set of
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primitive idempotents. Since R is right cogenerator, R is right Kasch. Thus, R
is a left C2-ring, and so RR is a C3-module. Then, since RR is a C11-module, it
follows from [21, Proposition 2.3 (iii) and Theorem 4.3] that each Rei is uniform.
Consequently, RR has finite uniform dimension. As RR is a C2-module, then R is
semiperfect by [12, Lemma 4.26]. In particular, R has a finite number of isomor-
phism classes of simple right and (left) R-modules. Since R is right cogenerator, R
is right self-injective by [12, Theorem 1.56]. Therefore, in view of [5, Proposition
18.9], R is quasi-Frobenius. �

Theorem 2.11. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is a right noetherian left P -injective lef C11-ring.

Proof. (1)⇒ (2) is clear.
(2) ⇒ (1) Since R is right noetherian, R contains no infinite orthogonal sets of

idempotents. So, we can write RR = Re1 ⊕ ...⊕Ren, where each Rei is a primitive
orthogonal idempotent. Note that RR is a C3-module. Then, since RR is a C11-
module, it follows from [21, Proposition 2.3(iii) and Theorem 4.3] that each Rei is
uniform. Consequently, RR has finite uniform dimension. Thus, using [25, Corollary
1.2], we deduce that R is semilocal. On the other hand, since R is right noetherian
left AGP -injective, J(R) is nilpotent by [25, Theorem 2.1]. This implies that R is
semiprimary, and so R is right artinian. Hence, R has ACC on left annihilators.
Note that R is left mininjective. Then, R is left minfull. Therefore, being left C11,
R is quasi-Frobenius by Theorem 2.2 (2). �

Corollary 2.12. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is a right Johns left C11-ring.

Corollary 2.13. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is a strongly right Johns left C11-ring.

3. Quasi-Frobenius rings via two-sided C11-rings

Following [25], a ring R is called right (left) quasi-dual if every right (left) ideal
is a direct summand of a right (left) annihilator.

Theorem 3.1. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is quasi-dual two-sided C11 with ACC on right annihilators;
(3) R is a two-sided C11-ring with ACC on right annihilators in which Soc(RR) =

Soc(RR) is essential as a left and a right ideal of R.

Proof. (1)⇒ (2) is clear.
(2) ⇒ (3) Since R is quasi-dual, Soc(RR) = Soc(RR) is essential as a left and a

right ideal of R by [25, Corollary 3.3].
(3) ⇒ (1) Since R has ACC on right annihilators and Soc(RR) = Soc(RR) is

essential as a left and a right ideal of R, we infer from [18, Lemma 4.3] that R is
semiprimary. Thus, using [12, Lemma 4.2], we deduce that R is right Kasch. Hence,
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by [12, Lemma 1.46], RR satisfies the C2-condition. Now, we claim that R is right
mininjective. To see this, let e be a local idempotent of R. Then Soc(Re) 6= 0. Since

RR is a C11-module satisfying the C2-condition, it follows from [21, Proposition 2.3
(iii) and Theorem 4.3] that Re is a uniform module. Consequently, Soc(Re) is
simple. But Soc(RR) ⊆ Soc(RR). Then, R is right mininjective by [12, Proposition
3.5]. Therefore, by Theorem 2.2(2), R is quasi-Frobenius. �

Corollary 3.2. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is right artinian two-sided C11 and Soc(RR) = Soc(RR).

Corollary 3.3. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is two-sided C11 two-sided AGP -injective with ACC on right annihilators.

Proof. (1)⇒ (2) is clear.
(2) ⇒ (1) By [18, Theorem 3.4] and its proof, R is semiprimary and Soc(RR) =

Soc(RR). Therefore, by Theorem 3.1(3), R is quasi-Frobenius. �

The next example shows that the condition ”Soc(RR) = Soc(RR)” in the hypoth-
esis of Corollary 3.2 is necessary.

Example 3.4 ([18, Remark 4.8(i)]). Consider the ring R =

[
F F
0 F

]
, where F is

a field. R is a two-sided artinian two-sided CS ring which is not quasi-Frobenius.

However, Soc(RR) =

[
0 F
0 F

]
and Soc(RR) =

[
F F
0 0

]
and Soc(RR) � Soc(RR)

and Soc(RR) � Soc(RR).

4. Automorphism-invariant rings and their generalizations

Lemma 4.1. If R is a left automorphism-invariant ring and containing no infinite
orthogonal sets of idempotents, then R is semiperfect.

Proof. Assume that R is a left automorphism-invariant ring and R contains no
infinite orthogonal sets of idempotents. Let e be a primitive idempotent of R.
Then, Re is an indecomposable autmorphism-invariant left R-module. It follows
that End(Re) is a local ring, and so e is a local idempotent of R. Thus, R is
semiperfect. �

Proposition 4.2. If R is left automorphism-invariant and has ACC on right anni-
hilators with Soc(RR) an essential right ideal, then R is a quasi-Frobenius ring

Proof. Assume that R is left automorphism-invariant and has ACC on right annihi-
lators with Soc(RR) an essential right ideal. Then, R is semiperfect by Lemma 4.1.
Moreover, J(R) is nilpotent by [9, Corollary 1.5]. It follows that R is semiprimary
and so R is left self-injective. This shows that R is quasi-Frobenius. �

Proposition 4.3. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is right automorphism-invariant right C11 with ACC on left annihilators.
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Proof. (1)⇒ (2) is clear.
(2) ⇒ (1) Since R has ACC on left annihilators, it has enough idempotents.

So, we can write RR = eiR ⊕ ... ⊕ enR where each eiR is a primitive orthogonal
idempotent. Being autmomorphism-invariant, RR is a C3-modue by [14, page 26].
Thus, since RR is a C11-module, each eiR is uniform by [21, Proposition 2.3 (iii)]
and Theorem 4.3]. Therefore, according to the proof of ((5)⇒ (1) of [14, Theorem
2], R is right self-injective. Thus, using [12, Proposition 18.9], we deduce that R is
quasi-Frobenius. �

Corollary 4.4. A left noetherian right automorphism-invariant C11-ring is quasi-
Frobenius.

Recall from [13] that a module N is said to be pseudo M -c∗-injective if for any
submodule A of M which is isomorphic to a closed submodule of M , every monomor-
phism from A to N can be extended to a homomorphism from M to N . A module
M is called pseudo-c∗-injective if M is pseudo M -c∗-injective. A ring is called right
pseudo-c∗-injective if RR is pseudo-c∗-injective.

Proposition 4.5. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is left 2-injective with ACC on right annihilators and Soc(RR) ≤e RR.
(3) R is left 2-injective right AGP -injective with ACC on right annihilators;
(4) R is left 2-injective right pseudo-c∗-injective with ACC on right annihilators.

Proof. (1)⇒ (2), (3), (4) are clear.
(2) ⇒ (1) Since R has ACC on right annihilators and Soc(RR) ≤e RR, R is

semiprimary by [18, Lemma 4.3]. Then by [12, Theorem 5.31], R is left Kasch.
Consequently, R is right P -injective by [12, Lemma 5.21]. Therefore, by [12, Theo-
rem 3.31], R is quasi-Frobenius.

(3) ⇒ (2) Since R is right AGP -injective with ACC on right annihilators, R is
semiprimary, by [25, Corollary 1.6]. Moreover, J(R) = Z(RR) by [25, Lemma 1.3],
and so Soc(RR) ⊆ Soc(RR). Hence, Soc(RR) ≤e RR.

(4) ⇒ (2) Since R is right pseudo-c∗-injective with ACC on right annihilators,
it follows from [13, Corollary 3.6] that R is semirpimary. Hence, by [12, Theorem
5.31], Soc(RR) ≤e RR. �

A ring R is strongly right Johns if Mn(R) is right Johns for all n ≥ 1. By [12,
Lemma 8.10], if M2(R) is right Johns, then so is R. We have the following result:

Corollary 4.6. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is strongly right Johns right pseudo-c∗-injective;
(3) R is strongly right Johns and Soc(RR) ≤e RR;
(4) M2(R) is right Johns right pseudo-c∗-injective;
(5) M2(R) is right Johns and Soc(RR) ≤e RR.

Theorem 4.7. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is two-sided pseudo-c∗-injective, two-sided C11 and has ACC on right

annihilators.
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Proof. (1)⇒ (2) is clear.
(2)⇒ (1) Since R is right pseudo-c∗-injective and has ACC on right annihilators,

by [13, Corollary 3.6], R is semiprimary. Hence, we can write RR = eiR⊕ ...⊕ enR
where each eiR is a primtive orthogonal idempotent. Being right pseudo-c∗-injective,
RR is a C3-modue by [13, Theorem 3.1]. Thus, since RR is a C11-module, each eiR
is uniform by [21, Proposition 2.3 (iii) and Theorem 4.3]. Therefore, according to
[13, Theorem 3.4], R is right continuous. Similary, since R is left C11, we can easily
show that R is left continuous. Now, being two-sided continuous with ACC on right
annihilators, R is quasi-Frobenius by [18, Corollary 4.11]. �

5. More characterizations

In the next result, we a provide a necessary and sufficient condition for a left
perfect right simple-injective ring to be quasi-Frobenius.

Theorem 5.1. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is left perfect right simple-injective and for every projective right R-module

M , Z2(M) is injective;
(3) R is left perfect right simple-injective and for every injective right R-module

M , Z2(M) is projective;
(4) R is left perfect right simple-injective and Z(RR) is a noetherian right R-

module.

Proof. (1)⇒ (2), (3), (4) are clear.
(2)⇒ (1) By [12, Theorem 2.21], Soc(RR) ⊆ Soc(RR), from which it follows that

Soc(RR) ≤e RR. Using [12, Lemma 4.2], we deduce that R is left Kasch and rl(T ) is
essential in a direct summand of R for all right ideals T of R. Also, R is right Kasch
by [12, Theorem 3.12]. Therefore, according to [12, Proposition 6.14], rl(T ) = T for
all right ideals T of R. Hence, J(R) ≤ Z2(RR) by [8, Lemma 2]. Let M be any
projective R-module. Then, by [7, p. 48 Exercise 22], M = Z2(M) ⊕M ′ for some
injective R-module. Therefore, by hypothesis, R is quasi-Frobenius.

(3)⇒ (1) Let M be an injective R-module. Thus, by the proof of (2)⇒ (1), M =
Z2(M)⊕M ′ for some projective R-module. By hypothesis, R is quasi-Frobenius.

(4)⇒ (1) As shown in the proof of (2)⇒ (1), R is left Kasch and rl(T ) = T for all
right ideals T of R. Thus, by [12, Proposition 5.20], Soc(RR) ≤e RR. It follows from
[12, Corollary 5.53] that R is right finitely cogenerated. Using [12, Lemma 6.43], we
deduce that R/Z(RR) is right noetherian. Note that Z(RR) is a noetherian right
R-module. Hence, we infer from [12, Lemma 8.6] that right artinian. Finally, R is
quasi-Frobenius by [12, Theorem 3.31]. �

Corollary 5.2. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is left perfect right self-injective and for every projective right R-module

M , Z2(M) is injective;
(3) R is left perfect right self-injective and for every injective right R-module M ,

Z2(M) is projective.

Recall that a ring R is said to be left pseudo-coherent if the left annihilator of
every finite subset of R is finitely generated.
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Theorem 5.3. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is two-sided minfull left (or right) pseudo-coherent and J(R) is left (or

right) T -nilpotent.

Proof. (1)⇒ (2) is clear.
(2)⇒ (1) By [12, Corollary 5.53], Soc(RR) is a finitely generated right ideal. Note

that R is left pseudo-coherent. Thus, J(R) is finitely generated as a left ideal. Since
J(R) is left T -nilpotent, we infer from [12, Lemma 5.64] that R is right perfect.
Therefore, according to [12, Lemma 6.50], R has ACC on left annihilators. On the
other hand, Soc(RR) = Soc(RR) is left finitely generated as a right R-module by
[12, Corollary 5.53]. Hence, by [12, Lemma 3.30], R is right artinian and we conclude
by [12, Theorem 3.31] that R is quasi-Frobenius. �

Corollary 5.4. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is a dual left (or right) pseudo-coherent ring in which J(R) is left (or

right) T -nilpotent.

Corollary 5.5. Then following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is left perfect, two-sided mininjective and left (or right) pseudo-coherent.

Theorem 5.6. Let R be a right C11 right minifull ring such that J2(R) = r(A) for
a finite subset A of R. Then J(R)/J2(R) is a finitely generated right R-module.

Proof. Let J2(R) = r(a1, ..., an). Define φ : R/J2(R) −→ RnR via φ(a + J2(R)) =
r(a1a, a2a..., ana) for a ∈ R. Then φ is a monomorphism. Hence, we may regard
J2(R)/J(R) as a submodule ofRnR. Also, we have J(R)/J2(R) = Soc(J(R)/J2(R)) ⊆
Soc(RnR) = (Soc(RR))n. On the other hand, Soc(RR) is finitely generated by Lemma
2.1. Therefore, as a direct summand of (Soc(RR))n, J(R)/J2(R) is a finitely gener-
ated right R-module. �

Corollary 5.7. Let R be a left perfect right C11 right mininjective ring. If J2(R) =
r(A) for a finite subset A of R, then R is quasi-Frobenius.

Proof. SinceR is left perfect right mininjective, it is right minfull. Thus, J(R)/J2(R)
is a finitely generated right R-module by Theorem 5.6. Now, being left perfect, R
is right artinian by [4, Lemma 2.9]. Thus, using Corollary 2.5(5), we deduce that R
is quasi-Frobenius. �

The following theorem is motivated by Theorem 3.13 in [10]. First, we prove the
following lemmas.

Lemma 5.8. Let R be a left continuous ring right RMC. Then R is semiperfect.

Proof. Assume that R is left continuous right RMC. Let S1 = Soc(QQ) where

Q = R/J(R). By [8, Lemma 2], Q is a von Neumann regular left continuous ring.
Consequently, Q/S1 is von Neumann regular. In addition, since Q has right RMC,
Q/S1 has finite right uniform dimension by [5, Lemma 5.14]. It follows that Q/S1

is semisimple. As Q is semiprime, then S1 = Soc(QQ). Thus, Q satisfies DCC on
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essential left ideals. Therefore, Q is an artinian ring by [5, Corollary 18.7(2)], and
we conclude by [8, Lemma 2] that R is semiperfect. �

Lemma 5.9. Let R be a left CS ring with right RMC such that every principal
right ideal is right annihilator. Then r(J(R)) is a noetherian right R-module.

Proof. Since every principal right ideal is right annihilator, R is a left C2-ring by
[12, Proposition 5.10]. Thus, by Lemma 5.8, R is semiperfect. Using [12, Theorem
5.52], we deduce that r(J(R)) is a noetherian right R-module, as required. �

Lemma 5.10. Let R be a left CS ring with right RMC such that every principal
right ideal is right annihilator. Then following conditions are equivalent:

(1) R is quasi-Frobenius;
(2) Z(RR) = Z(RR).

Proof. (1)⇒ (2) is clear.
(2)⇒ (1) By Lemma 5.9, r(J(R)) is a noetherian right R-module. By hypothesis,

Z(RR) = Z(RR). Thus, as Z(RR) = J by [8, Lemma 2], then it follows that Soc(RR)
is right finitely generated. Therefore, according to [5, Lemma 5.14], R has finite right
uniform dimension. Using [10, Proposition 2.4(e)], we deduce that Z(RR) is right
artinian. Hence, by hypothesis, R has ACC on left annihilators. Clearly, R is
right minannihilator by [12, Lemma 5.1] (i.e every minimal right ideal of R is an
annihilator). Therefore, R is quasi-Frobenius by [12, Theorem 4.22((1)⇔ (2))]. �

Now, we are able to prove the following result which improve Theorem 3.13((1)⇒
(2) in [10] and Proposition 18.6 in [5].

Theorem 5.11. The following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is a left P -injective left IN -ring with right RMC and J(R) is nil-ideal;
(3) R is a left P -injective left IN -ring with right RMC and Z(RR) = Z(RR).

Proof. (1)⇒ (2) is clear.
(2) ⇒ (3) Assume that R has the stated condition. By [10, Propositon 2.4(a)],

J(R) is nilpotent. It follows from [12, Proposition 5.10 and Theorem 6.32] and
Lemma 5.8 that R is semiprimary. Since R is left P -injective, we infer from [12,
Theorem 5.31] that Z(RR) = Z(RR).

(3) ⇒ (1) As R is a left IN -ring, it is left CS by [12, Theorem 6.32]. It is
clear that every principal right ideal is right annihilator (for, R is left P -injective).
But by hypothesis, Z(RR) = Z(RR). Therefore, according to Lemma 5.10, R is
quasi-Frobenius. �

Corollary 5.12. The following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is a two-sided P -injective left IN -ring with right RMC.

Proposition 5.13. The following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is a right P -injective right IN -ring with right RMC.

Proof. (1)⇒ (2) is clear.
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(2) ⇒ (1) By [12, Proposition 5.10 and Theorem 6.32], R is right continuous.
Using [12, Proposition 18.14], we deduce that R is right artinian. Hence, R has ACC
on right annihilators. Since R is left minannihilator, we infer from [12, Theorem
4.22((1)⇔ (2))] that R is quasi-Frobenius. �

Proposition 5.14. The following conditions are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) R is left Kasch, every closed right ideal is a right annihilator and Z2(RR) is

an injective artinian right R-module.

Proof. (1)⇒ (2) is clear.
(2) ⇒ (1) By [24, Theorem 10], R is semiperfect right continuous. Using [8,

Lemma 2], we deduce that J(R) ≤ Z2(RR). Therefore, from the hypothesis, we can
write R = Z2(RR) ⊕ K, where K is a semisimple right ideal. It follows that R is
quasi-Frobenius. �

Let (P ) be a property of rings. A ring R is called completely P if each factor ring
of R has the property (P ).

Proposition 5.15. A left perfect right completely simple-injective ring is quasi-
Frobenius.

Proof. Let R be a factor ring of R. By the proof (2)⇒ (1) of Theorem 5.1, R is right
continuous and rl(T ) = T for all right ideals T of R. It follows that R has finite
right uniform dimension. Hence, every cyclic right R-module is finitely cogenerated.
Thus, R is right artinian by [12, Lemma 1.52]. But R is two-sided mininjective.
Therefore, R is quasi-Frobenius by [12, Theorem 3.31]. �

Surjeet Singh and Yousef Al-Shaniafi (see [20, Theorem 1.10]) proved that: Let R
be any commutative ring such that the injective envelope E(R) of R is a projective
R-module. Then R = E(R), i.e., R is self-injective. From this, it is easy to see that
for a commutative ring R satisfying ACC on annihilators such that the injective
envelope E(R) of R is a projective R-module then R is quasi-Frobenius. Now we
will extend this result to the noncommutative case. A ring R is called right duo if
every right ideal is an ideal.

For a subset X of a right R-module M over a ring R, we denote that rR(X) or
r(X) the right annihilator of X in R. Now let X and Y are two subset of a right
R-module M , the subset {r ∈ R|Xr ⊆ Y } of R is denoted by [Y : X]. Recall that if
Y ≤ MR then [Y : X] ≤ RR and if X ≤ MR and Y ≤ MR then [Y : X] is an ideal
of R.

Let R be a right duo ring and P be a maximal ideal of R. Then it is easy to prove
that R \ P is multiplicatively closed and satisfies condition (S1): ∀s ∈ R \ P and
r ∈ R, there exist t ∈ R \ P and u ∈ R such that su = rt. Moreover, if R satisfies
ACC on right annihilators then by [17, Proposition 1.5], R\P is a right denominator
set. In this case, the ring R(R \ P )−1 is called the right localization with respect to
P and we write RP and MP instead of R(R \ P )−1 and M(R \ P )−1 = M ⊗R RP ,
respectively. A ring R is called right localizable if for each maximal right ideal P of
R, the right localization RP exists. A ring R is said to be left quasi-duo if each of its
maximal left ideals is an ideal of R. A ring R is called right QF-3+ if the injective
envelope E(RR) of RR is a projective right R-module.
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Theorem 5.16. Let R be a right duo, right QF-3+, left quasi-duo ring satisfying
ACC on right annihilators. Then R is quasi-Frobenius.

Proof. Now let P be a maximal ideal of R and θ : E → EP be the canonical map.
Then the right localization RP exists. Since E is projective, we have E ⊕A = R(X)

with some AR and index set X. We know that EP = E ⊗R RP , so

(E ⊕A)⊗R RP = (E ⊗R RP )⊕ (A⊗R RP )

= R(X) ⊗R RP ∼= R
(X)
P

Hence EP is a projective right RP -module.
Let F = {x ∈ E|[EP : x] 6⊆ P}. With assumption θ(1) ∈ EPP and by [19,

Lemma 3.17], [EP : 1] 6⊆ P. So 1 ∈ F . Similarly, by [19, Lemma 3.17], θ(x) ∈ EPP
if and only if [EP : x] 6⊆ P. So F = {x ∈ E|θ(x) ∈ EPP}. Because θ is an
R-homomorphism, we can prove easily that F is a submodule of E.

Now we will prove that F is quasi-injective. Now since E(F ) is a direct summand
of E, we can assume that we take any homomorphism ψ : E −→ E. There exists
an RP -homomorphism σ : EP −→ E such that σθ = ψ, i.e., the following diagram
is commutative:

E
θ //

ψ

��

EP

σ

��
E

Now, let t ∈ F then t ∈ E and there exists r 6∈ P such that tr ∈ EP. Moreover,
θ(t) ∈ EPP . Hence there exists p ∈ P, et ∈ Ep such that θ(t) = etp. So ψ(t) =
(σθ)(tr) = σ(θ(t))r = (σθ)(etp)r = (σθ)(et)pr ∈ EP. It follows that ψ(t) ∈ L.

Since F is invariant under any homomorphism of E, F is quasi-injective. Now
since 1 ∈ F , there exist r ∈ EP such that r 6∈ P . Let e ∈ E then since r ∈ (EP )∩R,
er ∈ E[(EP )∩R] ≤ EP. So e ∈ F. Hence E = F. Hence EP 6= EPP. So there exists
an e ∈ E such that θ(e) 6∈ EPP. Since E = L, e ∈ L, so [EP : e] 6⊆ P. Then
there exists v 6∈ P such that ev ∈ EP . Hence θ(e) ∈ EP. Contradiction. Hence
θ(1) 6∈ EPP. Since RP is a local ring and EP is a non-zero projective RP -module,
so it is free and then

EP =
⊕
i∈I

Ai, Ai ∼= RP .

Now we prove that E/R is a flat right R-module. By [17, Exe. 39, p. 48]
we need to prove that for every maximal left ideal P of R, EP 6= E. Note that
P is an ideal and since θ(1) 6∈ EPP, R ∩ EP ≤ P. Assume that EP = E then
x ∈ R ⇒ x ∈ E ⇒ x ∈ EP ⇒ x ∈ P. So R = P. Contradiction. Since E is
projective and by [12, Lemma 7.30], E is also finitely generated, so for some n ∈ N,
we obtain that Rn → E/R → 0 is exact and then by [17, Cor. 11.4, p.38], E/R is
projective. Then E = R. And R is right self-injective. Then R is quasi-Frobenius.

Corollary 5.17. ([20, Theorem 1.10]) Let R be any commutative, QF-3+ ring sat-
isfying ACC on annihilators. Then R is quasi-Frobenius.
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